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Determination of the Optimal Piping Diameter

Through Entropy Generation Minimization

Thesis Abstract – Idaho State University (2019)

A heat exchanger with constant heat flux is selected to apply a method of optimization through

entropy minimization to determine the diameter of the system.  This entropy minimization is examined

for the dependency upon the assumptions required to make during the analysis for the friction factor

and Nusselt number. The first approach is to use the differential method proposed by Dr. Adrian Bejan

while examining various assumptions. The second approach is to use a direct computation of the

entropy generated by analyzing the entire heat exchanger while also examining various assumptions.

These resulted in various diameters that mathematically are the optimum, but had an 85%

variation based upon the different assumptions and methods of calculation.  This indicates that the

method of entropy minimization as an optimization method is too dependent upon the required

assumptions for the friction factor and Nusselt number to be a reliable method of design.

Key Words: Entropy Generation, Minimization, Heat Exchanger
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Introduction
In determining the optimal piping diameter for heat exchangers, the method of entropy

generation minimization has frequently been used. This is a differential approach proposed by Dr.

Adrian Bejan to examine the competing effects of the pressure loss within the system and the heat

exchanged within the system. However, there is a mathematical discrepancy within the method

resulting from finding the minimum through the assumptions placed upon the parameters. The friction

factor and Nusselt number are two instances where an approximation equation has to be substituted to

then find the optimal diameter mathematically without experimentation. The various approximation

equations for these parameters can potentially have a significant effect upon the resulting optimal

diameter.

Therefore, various approximation equations will be assumed and then applied to a single heat

exchanger system. Once the different optimal diameters have been determined through the differential

approach, a direct method of determining the entropy generated will be applied to the system. This will

then allow an independent optimal diameter to be determined for the system which will give insight

into the validity of the method.

The heat exchanger system that will be used will be a constant linear heat flux heat exchanger.

This type of heat exchanger is achieved by placing a constant linear heat flux through various diameters

of piping by using electrical heaters. The length of the piping will be fixed due to the typical heat

exchanger having a physical limit. Finally, the mass flow rate will be fixed due to pumping restrictions.

However, this leaves the diameter of the heat exchanger undetermined, which creates a one

dimensional optimization problem.



2

Operational Definitions
The heat exchanger system will use water as the working fluid. This is due to the use of water in

many heat exchanger applications, and that the property tables for water are readily available. The

friction factor will be approximated using two different equations. The first is the assumption of smooth

pipes which is used by Dr. Adrian Bejan. The second will be the more accurate Haaland equation

approximation for the friction factor. Similarly, the Nusselt number will be approximated with two

different equations namely the Dittus-Boelter equation and the Gnielinski equation.

The differential approach will be applied to this system. Then the entropy generated will be

determined through the fixed inlet temperature and pressure, and then comparing to the outlet

temperature and pressure mathematically determined. The entropy generated will be determined

through the use of established property tables of the working fluid.

Theory
Entropy generation is simply defined to be the amount of entropy increased in a process due to

the second law of thermodynamics and the frictional losses of the system. However, it is easier to

conceptualize that entropy generation is directly proportional to the lost available work within the

system which is a result of the Guoy-Stodola Theorem [B]. As such it is easy to see that the minimization

of lost available work would result in the most efficient system.

Within a heat exchanger, the two sources of entropy generation are due to the heat transfer

and the fluid friction. To minimize the entropy generated from heat transfer, a small diameter pipe is

desired. Whereas, to minimize the frictional losses, a large diameter pipe is desired. This results in the

two competing sources of entropy generation which establishes the optimization problem.
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Most often, heat exchangers are run for long periods of time which allows the assumption that a

steady state system has been achieved. Applying the second law to such a system results in the entropy

generation equation shown in Equation 1 in per unit length form [B].

ˊ = + ( )∗ (1)

This allows the entropy generation per unit length to be determined. However, within this

equation, there is a dependence upon the properties of the working fluid, the friction factor of the

piping system, and the Nusselt number for the heating system. Therefore some assumptions must be

made to achieve an equation that can be differentiated. This leads to the potential mathematical

discrepancies within the method.

There are various assumptions that can be made for the friction factor. The easiest assumption

is to assume smooth pipes which results in an approximation as shown in Equation 2 with Reynold’s

number bounds of 10 < < 10 [B]. A more accurate approximation can be assumed using the

Haaland Equation as a function of Reynold’s number as shown in Equation 3 [M]. There are more

possible assumptions for the friction factor. However, these two assumptions have been selected to

examine. = 0.046 . (2)

= − 1.8 . ∗ . + .
(3)

Similarly the Nusselt number must also be approximated. The approximation used by Dr. Adrian

Bejan is the Dittus-Boelter equation which is shown in Equation 4 with bounds 0.7 < < 160
and	 > 10 [B]. The second approximation that will be used is the Gnielinski equation which can be
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seen in Equation 5 [C]. It is important to note that the Gnielinski equation also has the bounds 0.5 ≤≤ 2000 and	3 × 10 < < 5 × 10 . This results in the bounds 0.7 ≤ ≤ 160 and	10 < <10 to ensure all formula are applicable. = 0.023 . . (4)

= ∗( )∗. . (5)

It does not matter whether the derivative is taken with respect to the Reynold’s number or with

respect to the diameter. This can be seen by Equation 6 in which the derivative has been taken with

respect to the diameter. However, once the derivative is set equal to zero, the dependence upon the

diameter can be factored out due to the derivative of the Reynold’s number with respect to the

diameter being nonzero. Therefore, due to most approximation formulas being dependent upon the

Reynold’s number, the derivative will be taken with respect to the Reynold’s number.

ˊ = ˊ = 0	 ⇒ ˊ = 0 (6)

Since, the derivative of the entropy generation will be taken with regards to the Reynold’s

number, Equation 1 can be written as shown in Equation 7. From here it is easy to see that the

derivative will be as shown in Equation 8. However, the Gnielinski equation for the Nusselt number also

depends upon the friction factor, as such the derivative will be as shown in Equation 9 when this

approximation is used.

ˊ = + ( )∗ (7)
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ˊ = + − ( )∗ (8)

ˊ = + − ∗ + (9)

From here, the derivatives of the friction factor and Nusselt number with respect to the

Reynold’s number need to be calculated. The smooth pipe assumption leads to Equation 10. The

Haaland friction factor approximation leads to Equation 11. The Dittus-Boelter approximation for the

Nusselt number results in Equation 12. Finally, the Gnielinski equation leads to Equation 13.= − 0.0092 . (10)

= . ∗ . .. . . ∗∗ . .. . . ∗ ∗ . . . (11)

= 0.0184 . . (12)

+ = . ∗ ∗. . + . . . ( )
. . ∗ (13)

Substituting the smooth pipe assumption and the Dittus-Boelter assumption into the entropy

generation per unit length derivative results in Equation 14.

ˊ = . . − 11.071648 0.4 − 1.8 (14)
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Setting Equation 14 equal to zero and solving for the optimum Reynold’s number results in

Equation 15.

= 51.7505∗ 2 20.4 .
(15)

The remaining substitutions are left to the reader due to the complexity and length of the

resulting equations.  From here either each derivative equation can be set equal to zero to find the

Reynold’s number which produces the minimum entropy generation, or these other substitutions can

have the minimum directly computed through graphing the original entropy generation per unit length

function with a computer aided program such as MATLAB rather than solving the differential.

Only the substitution shown involving the smooth pipe friction factor along with the Dittus-

Boelter assumptions can easily be explicitly solved for the optimum Reynold’s number. The other

assumptions were programmed into a MATLAB script to solve the remaining substitutions. However, the

MATLAB script finds the minimum directly using the plot of entropy generation per unit length, rather

than finding when the derivative is equal to zero.

The following values shown in Table 1 were used in the MATLAB script as the conditions of the

heat exchanger. The equations required to determine the optimal Reynold’s number require the

properties of water at the bulk mean temperature.  Therefore, an iteration must occur to adjust the

calculations until the bulk mean temperature is accurate.  It was determined to also investigate the

dependence of the entropy generation minimization method upon the properties of water.

Table 1: Selected Initial Properties

= 0.32 = 500 = 20	℃ = 650000	 = 20	 = 0.26	
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Therefore three options were selected to determine the bulk mean temperature properties.

Two of the methods used the tabulated data in Cengel’s Heat and Mass Transfer Fundamentals and

Applications 4th Edition; a linear interpolation and a spline interpolation between the data points

provided [C].  Finally, the third method used was an online properties calculator by peace software

called Steam Calculation [P].  This online calculator uses the formulas of IAPWS-IF97 by Dr. Bernhard

Spang, however the site gives no guarantee for correctness on the property values calculated [P].  Since

this is only to show the dependence of the method upon the property values, this potential error was

accepted.

This resulted in the following exit temperatures as well as the bulk mean properties which are

shown in Table 2. It can be seen that the values are marginally different amongst the various property

determination methods.  Therefore, due to the Steam Calculation allowing easy computation of the

properties based upon both temperature and pressure, it will be the method used for the direct

computation of the entropy generated. Following this determination, the results of the entropy

generation minimization were calculated and are shown in Table 3 and the graphs of the entropy

generation are shown in Figures 1-3.

Table 2: Properties of Water

Linear Interpolation Spline Interpolation Steam Calculation		(℃) 27.476 27.475 27.475		(℃) 23.738 23.738 23.737		 997.252 997.248 997.6		 ∗ 0.6047 0.6048 0.6053		 ∗ 0.000919 0.0091706 0.000916	 6.3596 6.3432 6.328		 ∗ 4180.5 4180.5 4180.9
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Based upon these calculations, it can be seen that the small variations in the water properties

did not produce significant changes in the resulting optimal diameter. However, this shows that the

optimal diameter can significantly change based upon the assumptions placed upon the friction factor

and Nusselt number. Therefore, a verification of the optimum diameter is needed, and hence the need

to use the second method of a direct computation of the entropy generated in the heat exchanger by

determining the outlet conditions.

It is important to note that the Haaland assumption takes the pipe roughness into account. This

increases the contribution to entropy generation due to pressure loss, and therefore results in the

optimal diameter increasing as seen in the results.

Table 3: Results of Entropy Minimization Technique

Assumptions Linear Interpolation Spline Interpolation Steam Calculation
Reynold’s
Number

Diameter
(m)

Reynold’s
Number

Diameter
(m)

Reynold’s
Number

Diameter
(m)

Smooth pipe and Dittus
– Boelter 26040.8 0.0170 26094.2 0.0170 26122.5 0.0170

Smooth pipe and
Gnielinski 31177.6 0.0142 31242.3 0.0142 31277.4 0.0142

Haaland and Dittus –
Boelter 18380.8 0.0241 18417.6 0.0241 18437 0.0241

Haaland and Gnielinski 18515.0 0.0239 18550.6 0.0240 18569.3 0.0240
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Figure 1: Reynold's Number vs. Entropy Generation – Linear Interpolation Properties

Figure 2: Reynold's Number vs. Entropy Generation - Spline Interpolation Properties
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Figure 3: Reynold's Number vs. Entropy Generation - Steam Calculation Properties

Examining Figure 1 indicates that the true entropy generation minimization occurs with the

Haaland and Gnielinski assumptions in place. However, it is important to note that when other property

values were used different assumptions resulted in the optimum entropy generation rate.

This presents the issue of determining the correct optimal diameter.  Do the more accurate

friction factor and Nusselt number approximations result in a more accurate optimal diameter, or is the

method unstable in regards to the approximations assumed? Thus another mathematical method would

be preferred in the verification of which diameter is the optimum. For a steady state single flow system

we have Equation 16 for the entropy generation rate which can be applied to the entire heat exchanger

[C].

= − − (16)
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Since the heat exchanger is a constant linear heat flux system, we can substitute for the

temperature profile along the pipe surface and the linear heat flux shown in Equations 17 and 18

respectively, resulting in Equation 19 [C]. Substituting Equation 17, the mean temperature profile, and

the differential area results in Equation 20.

= + (17)

= ℎ − (18)

= − − (19)

= − − ∗
(20)

From here, it can be seen that all terms within the integral are constant except for the variable

of integration. Substituting the relation between the Nusselt number and the heat transfer coefficient

shown in Equation 21, performing the integration, and applying the limits results in Equation 22 [C].

= 	⇒ ℎ = ∗ (21)

= − − ln 		 	 (22)

Substituting the known parameters from Table 1 results in Equation 23. However, it is important

to note that a dimensional analysis must be performed prior to substitution to ensure substitutions with

base metric units is valid. This results in the expected units of watts per Kelvin, thus for simplicity the

units will be left to the reader. From here, a substitution for the Nusselt number is required.  We shall

use Equation 4 for simplicity.  This results in Equation 24 which will place bias towards the results that
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used the assumption of Equation 4, but this will still demonstrate the method is inconsistent and

depends highly upon the assumptions used throughout the method.

= 0.32 − − . . 	. 	 . 	 (23)

= 0.32 − − . ln . . . 	. . . 	 . . . 	 (24)

We must now determine the exiting temperature and pressure of the system to determine the

specific entropy value of the exiting water. The exiting temperature can easily be computed using

Equation 25 [C]. This can be seen to be independent of the selected diameter due to the structure of the

problem. Therefore, we will use the online steam calculation properties from Table 2 due to the ability

to have variations of the exiting entropy rate based upon both temperature and pressure.  This results in

Equation 26 for the entropy generation rate with the Reynold’s Number substituted in terms of the

diameter and the properties of water from Table 2.

= + (25)

= 0.32 − − 334.472	 ln .. . (26)

However in determining the exit pressure, Equation 27 will be used which has been written in

terms of diameter [M]. This equation is dependent upon the friction factor, and to avoid additional bias

towards the previous assumptions, the Moody diagram in conjunction with the Colebrook equation

written in terms of diameter shown by Equation 28 will be used [M].

= − 	 (27)
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= − 2.0 log . + .
(28)

This will allow the diameter to be iterated to determine which diameter results in the minimal

entropy generation. The diameter can be iterated in a simple sectioning scheme. The iteration will begin

with the optimal diameter result from the assumptions that produced the minimum entropy generation

per unit length as seen in Figure 1. Next the diameter will be perturbed larger and smaller to indicate

which direction the minimum exists. Then the diameter will be iterated until the minimum is found. This

iteration will use the online calculator Steam Calculation due to the ability to input both the

temperature and pressure, whereas the tabulated data uses the saturated water property values.

The specific entropy of the inlet water is	 = 296.3709 ∗ through the property calculator

Steam Calculation. The results of the iterations are listed below in Table 4, as well as being graphed in

Figure 4. Note, this table has been formatted in decreasing diameter and is not the actual iterations.

Table 4: Diameter Iterations

Diameter (m) Friction Factor Exit Pressure (Pa) Exit Specific

Entropy (J/kg K)

Entropy

Generation (W/K)

0.016 0.046535 576150.8 401.664 33.83

0.015 0.047477 545963.1 401.673 33.82

0.014 0.048542 499808.4 401.68588 33.81815

0.0135 0.049129 467679.14 401.69492 33.81687

0.0132 0.049501 444455.178 401.70146 33.81645

0.0131 0.049628 435940.567 401.7038565 33.816383

0.0130 0.049757 427001.86797 401.7063723 33.8163527

0.0129 0.049888 417614.3737 401.70901439 33.8163626

0.0128 0.050020 407751.7281 401.711790104 33.8164152

0.0125 0.050429 375021.8698 401.721000895 33.8168555

0.012 0.051152 307928.5 401.7399 33.8187
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Figure 4: Entropy Generation Rate

From here we see that the optimal diameter is 0.013 m. This is yet another method producing a

different claimed optimum diameter that still appears to achieve the goal of minimizing entropy

generation.  However, it is important to note that although some bias is introduced towards the selected

Nusselt number approximation, this method also included the pressure loses due to a rough pipe.  That

would lead one to expect that a higher optimal diameter closer to the 0.0241 m result would be found.

Instead, an optimal diameter smaller than the previous four results was found. Furthermore, the values

in Table 4 could not be determined with the precision indicated, but this was needed to fine tune the

diameter to 0.013 m. Otherwise, a range of optimal diameters from 0.016 m to 0.012 m would have

resulted in the minimal entropy generation rate of 33.8 W/K. However, this range of optimal diameters

does include the result of 0.0142 m from the differential approach with the smooth pipe and Gnielinski
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assumptions. This indicates that the smooth pipe and Gnielinski assumptions may result in the most

accurate optimal diameter.

A final comparison between the various methods is to compare the actual friction factor and

Nusselt number approximations for each purported optimal diameter to see the variations amongst

each approximation method. These comparisons are shown in Table 5, which is set up so that the main

diagonal contains the corresponding method’s claimed optimal diameter. This shows the instability of

the method of entropy generation minimization lies within the approximations due to no discernible

pattern amongst the friction factor and Nusselt number corresponding to the asserted optimal

diameters. One particular example to consider is the direct calculation method with the Colebrook

equation and the Dittus-Boelter approximation compared to the Haaland and Dittus-Boelter

approximations.  These two approximations are very similar in the friction factor for all diameters and

have the same assumption for the Nusselt number, but the two result in vastly different optimal

diameters.

Table 5: Friction Factor and Nusselt Numbers

Diameter 0.013 m 0.0142 m 0.017 m 0.024 m 0.0241 m
Reynold’s
Number 34215.4 31323.9 26164.7 18533.3 18456.4

Method
Direct

Colebrook
and Dittus-

Boelter

0.049757 203.99 0.04832 190.08 0.04570 164.59 0.04182 124.91 0.04179 124.50

Smooth and
Gnielinski 0.00570 82.250 0.00580 76.11 0.00602 65.00 0.00644 47.70 0.00645 47.55

Smooth and
Dittus-
Boelter

0.00570 203.99 0.00580 190.08 0.00602 164.59 0.00644 124.91 0.00645 124.50

Haaland and
Gnielinski 0.04983 382.05 0.04838 342.19 0.04573 273.78 0.04177 179.80 0.04174 178.93

Haaland and
Dittus-
Boelter

0.04983 203.99 0.04838 190.08 0.04573 164.59 0.04177 124.91 0.04174 124.50
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Conclusion
The method of entropy generation minimization proposed by Dr. Adrian Bejan was analyzed

against a heat exchanger with constant heat flux.  The method requires approximations of the friction

factor and Nusselt number to be made during the analysis.  Two assumptions for each term were made,

and inserted into the method.  This resulted in four different optimal diameters ranging from 0.0241 m

to 0.0142.

An independent method of determining the minimal entropy generation rate through directly

calculating the entropy generation rate based upon the heat transferred throughout the system and the

inlet and outlet properties.  This also required approximations of the friction factor and Nusselt number.

The more accurate implicit Colebrook formula for the friction factor was used, which cannot be used in

the method proposed by Dr. Adrian Bejan, along with the Dittus-Boelter equation for the approximation

of the Nusselt number was used.  This resulted in a fifth optimal diameter of 0.013 m, giving a range of

optimal diameters from 0.013 m to 0.0241 m.  This results in an 85% variation based upon the different

assumptions and methods of calculation.

This shows that the method of entropy generation minimization is a mathematically unstable

problem with a high dependence upon the approximations chosen for the friction factor and Nusselt

number.  This results in the method being inadequate for obtaining results to base the design of systems

upon, and it should not be used in place of other analyses in the optimization of design.

Future Work
With the conclusion that the entropy generation minimization is unstable with regards to the

assumptions used within the approach, it brings into question which assumptions lead to the most

accurate results for implementation into design. Was the smooth pipe and Gnielinski assumptions the

most accurate optimal diameter since the assumptions resulted in the closest diameter to the direct

computation method? To determine this, an experimental validation is required.  The specific problem
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presented here is a simplified cooling system that would be required for large data centers.  Various

electronic components require a fixed wattage to operate.  This in turn results in a fixed heat

generation.

Although the analysis was simplified, this also demonstrates how to design an experiment to

test the results. The experiment would require flowing water through various pipe diameters with

electronically controlled heat tape wrapped carefully around the length of pipe.  This would allow the

heat flux into the pipe to be controlled, but insulation should be placed around the pipe to minimize

loses.

At the inlet of the pipes, a flow meter, pressure gauge, and temperature gauge would be

required to monitor inlet properties.  The outlet of the pipe would require a second pressure gauge and

temperature gauge.  This would allow the specific entropy of the inlet and outlet water to be

determined.  The final component is a watt meter to determine the exact amount of energy being

transferred within the heat exchanger.

An assumption that the insulation on the pipe was sufficient to isolate the heat exchanger from

external heat loss or gain would be required for this particular experiment.  However with this

assumption, the exact entropy generated for each various pipe diameter can be calculated based upon

the data above.  This would then allow the actual optimal diameter that minimizes entropy generation

to be determined.  This result would then be compared against the mathematical results presented

above.  The mathematical/numerical model which best fits the experimental results would give an

indication of which assumptions should be used in other optimization problems.  However there is no

guarantee the assumptions can transfer to other problems and more experimentation will be

warranted.
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Appendix 1: Matlab Code EntropyMin.m

(This page intentionally left blank)



12/7/18 10:36 AM C:\Users\Taylor\Documents...\EntropyMin.m 1 of 4

%This program determines the optimum Reynold's number for a constant heat
%flux heat exchanger. The program uses two different friction factor

%assumptions and two different Nusselt number equations. The program uses
%a plotting method to find the minimum to allow for plotting the graphs if desired
%Some properties need to be taken at the bulk mean temperature so the program is set up
to
%easily redefine only the bulk mean temperature properties if desired.

clc
disp('Warning: This program requires compatible units and absolute temperatures' )
def = input('Would you like to define all the variables? Y or N: ' , 's');
if def == 'Y'
    mdot = input('Please enter the mass flow rate: ' );
    qlinflux  =input('Please enter the linear heat flux: ' );

    Tin = input('Please enter the initial absolute temperature: ' );
    Pin = input('Please enter the initial pressure: ' );
    Tbm = input('Please enter the bulk mean temperature: ' );
    row = input('Please enter the bulk mean density: ' );
    thermcond = input('Please enter the thermal conductivity at the bulk mean
temperature: ');
    dynvisc = input('Please enter the dynamic viscosity at the bulk mean temperature: ' );
    Pr = input('Please enter the Prandtl number at the bulk mean temperature: ' );
    Cp = input('Please enter the specific heat at the bulk mean temperature: ' );
    rough = input('Please enter the pipe roughness: ' );
    L = input('Please enter the length of pipe: ' );
else

    def = input('Would you like to enter the bulk mean properties? Y or N: ' ,'s');
if def == 'Y'

        Tbm = input('Please enter the bulk mean temperature: ' );
        row = input('Please enter the bulk mean density: ' );
        thermcond = input('Please enter the thermal conductivity at the bulk mean
temperature: ');
        dynvisc = input('Please enter the dynamic viscosity at the bulk mean temperature:
');
        Pr = input('Please enter the Prandtl number at the bulk mean temperature: ' );
        Cp = input('Please enter the specific heat at the bulk mean temperature: ' );

end

end

def = input('Would you like to enter the Reynolds number range? Y or N: ' ,'s');
if def == 'Y'
    Remin = input('Please enter the smallest Reynolds number to consider: ' );
    Remax = input('Please enter the highest Reynolds number to consider: ' );
    Retol = input('Please enter the tolerance for the Reynolds number: ' );
    Rerange=[Remin:Retol:Remax];
end

%Create friction factor and Nusselt number ranges
%f1 - smooth, f2 - Haaland, Nu1 - Dittus-Boelter, Nu2# - Gnielinski with

%corresponding friction factor
f1 = 0.046.*Rerange.^(-0.2);

20



12/7/18 10:36 AM C:\Users\Taylor\Documents...\EntropyMin.m 2 of 4

f2 = (-1.8.*log10((rough*pi*dynvisc.*Rerange./(14.8*mdot)).^1.11+6.9./Rerange)).^-2;
Nu1 = 0.023*Pr^0.4.*Rerange.^0.8;

Nu21 = Pr*f1.*(Rerange-1000)./(8*(1+12.7.*(f1./8).^0.5.*(Pr^(2/3)-1)));
Nu22 = Pr*f2.*(Rerange-1000)./(8*(1+12.7.*(f2./8).^0.5.*(Pr^(2/3)-1)));

%Compute the different entropy generation per unit length rates
Sgenprime11 = pi^3*dynvisc^5/(32*row^2*mdot^2*Tbm).*f1.*(Rerange.^5)+qlinflux^2./
(pi*Tbm^2*thermcond.*Nu1);
Sgenprime12 = pi^3*dynvisc^5/(32*row^2*mdot^2*Tbm).*f1.*(Rerange.^5)+qlinflux^2./
(pi*Tbm^2*thermcond.*Nu21);
Sgenprime21 = pi^3*dynvisc^5/(32*row^2*mdot^2*Tbm).*f2.*(Rerange.^5)+qlinflux^2./
(pi*Tbm^2*thermcond.*Nu1);
Sgenprime22 = pi^3*dynvisc^5/(32*row^2*mdot^2*Tbm).*f2.*(Rerange.^5)+qlinflux^2./
(pi*Tbm^2*thermcond.*Nu22);

%Determine the minimum
[~,I]=min(Sgenprime11);
Re11 = Rerange(I);
fprintf('\n');
fprintf('The optimum Reynolds number for smooth pipes and Dittus - Boelter assumptions
is: %g \n', Re11);
%Compute the optimal diameter
Dopt11 = 4*mdot/(Re11*pi*dynvisc);
fprintf('This results in an optimum diameter of %g \n' , Dopt11);
%Compute the exit pressure
Pexit11 = Pin-f1(I)*L*Re11^2*dynvisc^2/(Dopt11^3*2*row);

fprintf('with an exiting pressure of %g \n' , Pexit11);
%Compute the exit temperature
Texit11 = Tin+qlinflux*L/(mdot*Cp);
fprintf('and an exit temperature of %g \n' , Texit11);
%Compute the total heat transfer rate
Q11 = qlinflux*L;
fprintf('The total heat transfer rate is %g \n' , Q11);
%Compute the entropy generation rate (assumed average over length,
%but this seems to allways be off when trying to do the verification)
Sgen11=Sgenprime11(I)*L;
fprintf('This resulted in an entropy generation rate of %g \n\n' , Sgen11);

[~,I]=min(Sgenprime12);
Re12 = Rerange(I);
fprintf('The optimum Reynolds number for smooth pipes and Gnielinski assumptions is: %g
\n', Re12);
Dopt12 = 4*mdot/(Re12*pi*dynvisc);
fprintf('This results in an optimum diameter of %g \n' , Dopt12);
Pexit12 = Pin-f1(I)*L*Re12^2*dynvisc^2/(Dopt12^3*2*row);
fprintf('with an exiting pressure of %g \n' , Pexit12);
Texit12 = Tin+qlinflux*L/(mdot*Cp);
fprintf('and an exit temperature of %g \n' , Texit12);
Q12 = qlinflux*L;

fprintf('The total heat transfer rate is %g \n' , Q12);
Sgen12=Sgenprime12(I)*L;
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fprintf('This resulted in an entropy generation rate of %g \n\n' , Sgen12);

[~,I]=min(Sgenprime21);
Re21 = Rerange(I);
fprintf('The optimum Reynolds number for Haaland and Dittus - Boelter assumptions is: %g
\n', Re21);
Dopt21 = 4*mdot/(Re21*pi*dynvisc);
fprintf('This results in an optimum diameter of %g \n' , Dopt21);
Pexit21 = Pin-f2(I)*L*Re21^2*dynvisc^2/(Dopt21^3*2*row);
fprintf('with an exiting pressure of %g \n' , Pexit21);
Texit21 = Tin+qlinflux*L/(mdot*Cp);
fprintf('and an exit temperature of %g \n' , Texit21);
Q21 = qlinflux*L;
fprintf('The total heat transfer rate is %g \n' , Q21);

Sgen21=Sgenprime21(I)*L;
fprintf('This resulted in an entropy generation rate of %g \n\n' , Sgen21);

[~,I]=min(Sgenprime22);
Re22 = Rerange(I);
fprintf('The optimum Reynolds number for Haaland and Gnielinski assumptions is: %g \n' ,
Re22);
Dopt22 = 4*mdot/(Re22*pi*dynvisc);
fprintf('This results in an optimum diameter of %g \n' , Dopt22);
Pexit22 = Pin-f2(I)*L*Re22^2*dynvisc^2/(Dopt22^3*2*row);
fprintf('with an exiting pressure of %g \n' , Pexit22);
Texit22 = Tin+qlinflux*L/(mdot*Cp);

fprintf('and an exit temperature of %f \n' , Texit22);
Q22 = qlinflux*L;
fprintf('The total heat transfer rate is %g \n' , Q22);
Sgen22=Sgenprime22(I)*L;
fprintf('This resulted in an entropy generation rate of %g \n\n' , Sgen22);

%Generate plots if desired
def = input('Would you like to see the plots of the four methods? Y or N: ' ,'s');
if def == 'Y'
    figure
    subplot(2,2,1)

    plot(Rerange,Sgenprime11)
    title('Smooth & Dittus-Boelter')
    xlabel('Reynolds Number')
    ylabel('Entropy Generation Rate per Length' )
    subplot(2,2,2)
    plot(Rerange,Sgenprime12)
    title('Smooth & Gnielinski')
    xlabel('Reynolds Number')
    ylabel('Entropy Generation Rate per Length' )
    subplot(2,2,3)
    plot(Rerange, Sgenprime21)
    title('Haaland & Dittus-Boelter')

    xlabel('Reynolds Number')
    ylabel('Entropy Generation Rate per Length' )
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    subplot(2,2,4)
    plot(Rerange, Sgenprime22)

    title('Haaland, & Gnielinski')
    xlabel('Reynolds Number')
    ylabel('Entropy Generation Rate per Length' )
end
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