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VEGETATION MEASUREMENTS IN SAGEBRUSH STEPPE USING 

TERRESTRIAL LASER SCANNING  
 

Thesis Abstract – Idaho State University (2014) 

 

Terrestrial laser scanning (TLS) enables efficient collection of vegetation 

structural characteristics across large swaths, and may provide a valuable tool for 

research and management efforts in sagebrush-dominated rangeland ecosystems in the 

western United States.  We studied the use of TLS in rangeland environments at the scale 

of hectare plots (n = 26).  First, we tested the ability of TLS-derived measurements of 

structure to model canopy cover and biomass of several classes of vegetation, using 

manually collected data from 1 x 1 m quadrats (n = 206) for training and validation.  We 

applied Random Forests regression modeling to predict canopy cover and biomass of 

different vegetation classes using TLS-derived structural properties, with model strength 

ranging between R2 = 0.28 and R2 = 0.72.  Second, we performed several experiments to 

quantify occlusion in TLS point clouds collected in rangelands and the success of 

methods to mitigate it, providing a body of useful information to optimize the efficiency 

and quality of future TLS collections in rangelands.   
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Chapter 1.  Purpose and Background 

1.1. Statement of Purpose 

Dryland ecosystems, which cover over 40% of Earth’s land area (White and 

Nackoney 2003), are susceptible to numerous sources of degradation.  Prominent among 

these are mismanaged grazing (Milton et al. 1994), biological invasion (D'Antonio and 

Vitousek 1992), anthropogenic alteration of fire regimes (Bistinas et al. 2013), changing 

climate (Cowie et al. 2011), and human land use (Reynolds et al. 2007).  Degradation of 

dryland ecosystems often yields consequences that fit a pattern termed “desertification”.  

Deleterious effects of desertification include soil loss (Ravi et al. 2010), increased 

wildfire hazard (D'Antonio and Vitousek 1992), decreased carbon storage (White and 

Nackoney 2003), reduced forage quality (Milton et al. 1994), reduced ecosystem 

complexity (Cowie et al. 2011), negative impacts on air quality (Goudie 2014), negative 

impacts on water quality (Bregas 1998), and loss of cultural value (Reynolds et al. 2007).  

An estimated 10% - 20% of Earth's drylands are affected by desertification (WRI 2005).   

Shrub ecosystems occupy more than half of Earth's drylands (Reynolds et al. 

2007), including approximately 47 million hectares of sagebrush (Artemisia tridentata) -

dominated steppe in the western United States (Bukowski and Baker 2013).  Native 

sagebrush-steppe plant communities are composed of various shrub species, 

bunchgrasses, forbs, and biological crust constituents (Davies and Bates 2010).  The 

diverse fauna occupying sagebrush-steppe include several obligate wildlife species, 

notably the charismatic sage grouses (Centrocercus sp.) and pygmy rabbit (Brachylagus 

idahoensis) (Welch 2005).  Human land uses in sagebrush-steppe include ranching, 
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recreation, cultural, and military (Knick et al. 2011), and ecosystem services include 

carbon storage and sequestration (Hunt et al. 2004) and capture of snow, nutrients, and 

sediments (e.g. Sankey et al. 2012).  

It is estimated that sagebrush-steppe ecosystems currently occupy about 55% of 

their historical range in the western United States.  About 13% of this range has been 

converted to agriculture, and about 1% is occupied by urban areas or human 

infrastructure.  The remainder is occupied by non-shrubland ecosystems, typically 

dominated by non-native species, but including to a lesser extent areas where native 

woodlands have encroached onto shrublands (Knick et al. 2004).  The replacement of 

native shrub-dominated communities by non-native plants is largely driven by a 

phenomenon referred to as the “grass-fire cycle”, wherein the presence of invasive annual 

grass and forb species promote more frequent and severe wildfires, which in turn 

encourage the further spread and dominance of non-native plants (D'Antonio and 

Vitousek 1992).  The invasive grass-fire cycle often introduces a desertified ecological 

steady-state, with little hope of reestablishing native communities (Knick 1999).  A 

separate dynamic exists in montane areas, where livestock grazing, fire suppression, and 

periods of above-average moisture have allowed native conifer woodlands to encroach on 

adjacent shrub-steppe.  The encroachment of conifers into shrublands increases coarse 

woody fuels and enhances the risk of severe stand-replacing fires, which may also result 

in invasion by non-native annual plant species and potential transition to a grass-fire 

cycle (Miller and Tausch 2000). 

The dire degradation threats in the steppes of the western United States have 

prompted urgent management efforts, including legislation mandating the preservation 
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and rehabilitation of sagebrush-steppe and prevention of future catastrophic wildfires 

(e.g. Federal Land Assistance, Enhancement, and Management Act 2009, Healthy Lands 

Initiative 2009).  Different landscape treatments endorsed and carried out in support of 

these goals include the planting of tall, deep-rooted bunchgrasses to compete with 

invasive plants, fuels reduction via strategic grazing, wildfire suppression, invasive plants 

eradication via herbicide or controlled burns (Johnson and Davies 2012), mechanized 

thinning of dense shrub communities and removal of encroaching trees (Davies et al. 

2012), and planting of fire-resistant “greenstrips” (Davison and Smith 1997).  However, 

understanding the long-term efficacy of these treatments requires further study (Beck et 

al. 2009, Davies et al. 2012, Hess and Beck 2012). 

The ability to inventory the quantity and makeup of rangeland vegetation is 

essential to target landscape treatments and understand their effects, in addition to a host 

of ecological modeling purposes.  Historical efforts to take stock of rangeland vegetation 

have relied on field-measured metrics, such as transect and frame-based measurements in 

plot-scale studies (Davies et al. 2012), and harvested dry weight and various volume 

derivations for studies at the scale of individual plants (Uresk et al. 1977).  These manual 

methods are accurate, but limited in scope by manpower and logistics (Bonham 1989).   

Remote sensing technology offers the ability to extend measurements of 

vegetation traits across the vast and often-remote rangeland landscapes of the western 

United States.  However, interpretation of spectral data is challenged by the small stature, 

mute color, and sparse canopies of individual plants, and their sparse arrangement across 

the landscape, so application of spectral remote sensing towards shrub-steppe inventory 

has largely been limited to qualitative mapping of broad ecosystem types (Jacobson and 
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Snyder 2000, Knick et al. 1997, Sankey and Germino 2008, Okin et al. 2001).  Fusion of 

spectral data with structural information derived from airborne laser scanning (ALS) has 

the potential to improve classification to the community or species level, and also offers a 

means of quantifying the stature of vegetation (Bork and Su 2007, Mundt et al. 2006, 

Sankey et al. 2010).  The utility of ALS is somewhat limited by the low point density and 

high error of typical collections, relative to low-stature shrubs and herbaceous rangeland 

vegetation (Mitchell et al. 2011, Sankey and Bond 2011, Streutker and Glenn 2006). 

Terrestrial laser scanning (TLS) allows structural measurements at centimeter 

resolution over ranges extending to hundreds of meters, and provides an intermediate 

approach between highly-localized, precise field measurements and spatially-extensive, 

relatively-coarse remotely-sensed measurements from aerial and satellite platforms.  

Applications of high-definition TLS collection to inventory of sagebrush-steppe include 

work to predict biomass of individual sagebrush shrubs (Olsoy et al. 2014a, b), model 2 

cm scale structure of individual sagebrush shrubs (Adams 2014), detect individual shrubs 

across plots, and predict their height and crown area (Vierling et al. 2013).  In a similar 

shrub-dominated ecoystem, TLS has been demonstrated to predict the volume of 

herbaceous and shrub fuelbeds (Loudermilk et al. 2009).  Measurements made using TLS 

in sagebrush-steppe have also been strongly correlated with aerial laser scanning 

measurements, suggesting that TLS collections may be used to train and evaluate 

interpretation of broader-scale datasets (Li, in review).    

This thesis research aims to build on the growing body of work applying TLS to 

rangeland inventory by developing methods to predict traits of different sagebrush-steppe 

vegetation types across hectare plots, with specific objectives to: (1) test the ability of 
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TLS-derived structural indices to predict field measurements of canopy cover and 

biomass of several classes of rangeland vegetation; (2) assess the repeatability of datasets 

yielded by a TLS sampling methodology in rangelands; (3) identify limitations and 

methods to optimize future applications of TLS in sagebrush-steppe.   

1.2. Laser Scanning  

 Laser scanning, commonly called light detection and ranging (LiDAR), refers to 

technologies using laser pulse ranging measurements to record precise structural 

information about targets.  Nearly all outdoor laser scanning systems operate by emitting 

a pulse of light in a known direction, and recording the time-of-flight between pulse 

emission and return, allowing calculation of the point in 3D space where the pulse was 

reflected.  Additional information may be recorded about the amplitude of the light wave 

returning to the sensor, which may be used to infer properties of the target such as width, 

aspect, or spectral reflectance at the laser wavelength.  Measuring the changing amplitude 

of the light wave returning to the sensor over time may allow inference of more than one 

3D point per pulse release, as several peaks in the amount of returning energy may 

indicate fractions of the pulse reflecting off of several spatially-staggered surfaces falling 

in the bounds of the pulse's footprint.  As the footprint of light pulses increase with range, 

the precision of measurements on the plane normal to the pulse path decreases 

accordingly, and the likelihood of a single target reflecting only a portion of the pulse's 

energy increases.  Lasers of various wavelengths and powers may be deployed depending 

on the application (for example, green lasers penetrate water well and are useful to 

measure bathymetry, while near-infrared lasers are eye-safe and transmit well over long 

distances through air) and several lasers of different wavelengths employed on a single 
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instrument allow for multispectral as well as structural sampling.  Laser scanners may be 

deployed on static terrestrial, mobile terrestrial, airborne, and spaceborne platforms, with 

a variety of different mechanisms to achieve scanning action and, if necessary, account 

for platform motion (Heritage and Large 2009, Shan and Toth 2008). 

 Of the various configurations of laser scanners, ALS is the most common and 

mature, with diverse applications in vegetation studies.  Use of ALS is especially well-

established for inventory in forest environments, where the large size of trees enables 

collection of numerous samples per individual plant while sampling at typical point 

densities (4 - 15 measurements per m2) (Wulder et al. 2012).  ALS collections in forests 

have been used to effectively measure or predict diverse vegetation structural 

characteristics at the scale of both plots and individual trees, including height, canopy 

volume, basal area, and aboveground biomass  (e.g. Andersen et al. 2005, Bork and Su 

2007, Vierling et al. 2008).  However, applications of ALS to vegetation structure 

inventory in shrub-dominated ecosystems have proven problematic due to low 

measurement accuracy, low sampling density, and large pulse footprints relative to small-

stature shrubland vegetation.  In particular, ALS measurements of height yield systematic 

negative errors where sampling density is too low to reliably sense small canopy peaks, 

or where canopy peaks are too small to reflect a greater proportion of pulse footprints 

than dense vegetation lower in the plant (Hopkinson et al. 2005, Sankey and Bond 2011).  

Increasing sampling density of collections has been shown to increase the accuracy of 

shrub structural measurements (Estornell et al. 2011), but even in optimal collections 

(high sampling density, low footprint size), error of ~30% in sagebrush height 

measurements were found to be routine (Mitchell et al. 2011).  Even presence-absence 



7 

 

predictions of sagebrush distribution were found to be mediocre using ALS as a 

standalone data source (Streutker and Glenn 2006).  The ability of ALS collections to 

quantify non-shrub rangeland vegetation types has so far been hamstrung by 

measurement error, which often exceeds the total height of grasses and other annual 

herbaceous vegetation (Hopkinson et al. 2005, Streutker and Glenn 2006), although 

rapidly-improving sensor technology may overcome this limitation (Vierling et al. 2013).  

 TLS collections overcome some of the limitations presented by ALS.  Consisting 

of a rotating scanner mounted on an elevated platform, TLS instruments provide rapid 

collection of super-dense sampling within the scanner's field of view, extending to ranges 

beyond a kilometer.  The error of TLS measurements is low, and sampling at 

functionally-redundant density is often achievable at little logistical expense.  While ALS 

sampling is limited to the topmost surfaces of targets (or a number of staggered upper 

surfaces, in the common case of multiple-return collections), TLS instruments may be 

deployed to collect from any angle—beyond the standard configuration of scanning 

horizontally from eye-level bases, TLS collections have been performed from extendable 

masts (USA ERDC 2012), canyon edges (Vierling et al. 2013), and in upward-scanning 

configurations (Zhao et al. 2012).  Collections from several positions may be co-

registered, allowing sampling of targets from diverse angles.  The advantages provided 

by TLS come at a cost: while ALS collections offer roughly uniform sampling density, 

coverage, and range effects throughout the dataset, raw TLS point clouds are irregular, 

with sampling density and pulse footprint compactness decreasing exponentially with 

range from the scanner, and often-extensive unsampled (“shadowed”) spaces where 

protruding surfaces occlude the instrument's field-of-view (Van der Zande 2008).   
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 Predicting vegetation traits that cannot be directly measured using TLS point 

clouds is done using a variety of proxy measurements such as modeled plant volume or 

moving-window statistical measures of reflection positional distribution (e.g. range of 

sample heights, density of samples).  Where range effects may be negated or normalized, 

the amplitude (intensity) of individual reflections has been shown to accurately discern 

fine fuels from coarse branchwood and green from woody vegetation (Olsoy et al. 2014, 

Seielstad et al. 2011).  Different vegetation types may also be classified using structural 

indices, such as moving-window eigenvalues or similarity to a predetermined 3D 

“wavelet” shape (Brodu and Lague 2012, Garrity et al. 2012, Vierling et al. 2013).       

 A growing body of work employs TLS sampling to measure and predict a wide 

variety of vegetation characteristics.  In forest ecosystems, TLS has been found to be an 

efficient replacement of traditional sampling methods in measuring a variety of common 

metrics including tree strem count, basal area, biomass, height, location, leaf area index, 

plant area index, and canopy gap fraction (Henning and Radtke 2006, Yao et al. 2011, 

Zhao et al. 2011, Zhao et al. 2012).  Many of the applications of TLS towards shrubland 

research have been performed at the scale of individual plants, both in the field and as 

isolated laboratory specimens.  These include measurement of fine-scale sagebrush 

structure for wildfire modeling purposes (Adams 2014), modeling of sagebrush biomass 

separated into green and woody classes (Olsoy et al. 2014b), measurement of shrub 

volume and limb surface area (Kaluza et al. 2012), and shrub leaf surface area 

(Loudermilk et al. 2009).  At the plot scale, TLS has been used to measure sagebrush 

height and canopy area, model shrub and herbaceous fuelbed volume (Loudermilk et al. 

2009), train sagebrush biomass modeling using ALS datasets (Li, in review), and create 
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“fearscape” models of visibility through sagebrush cover (Olsoy, in press).  Although we 

are unaware of research applying TLS-derived structural information towards non-shrub 

rangeland plant types (low grasses, tall bunchgrasses, and forbs), the success of past work 

using manual measurements of structure to estimate biomass of bunchgrasses suggests 

that it is possible (Andariese and Covington 1986, Tausch 1989). 

1.3. Sagebrush-Dominated Ecosystems  

 Sagebrush ecosystems cover 47 million hectares in the western United States and 

are the dominant native landcover in drylands of the Great Basin and Columbia Basin 

(Bukowski and Baker 2013).  Big sagebrush (Artemisia tridentata), which is the most 

common and widespread canopy species, is composed of 3 subspecies: Wyoming big 

sagebrush (A. tridentata wyomingensis) occupies relatively dry lowlands; mountain big 

sagebrush (A. tridentata vasyana) occupies relatively cool and mesic uplands; basin big 

sagebrush (A. tridentata tridentata) occupies intermediate environments (Tausch 1989).  

Allied shrub species include three other sagebrushes, low sagebrush (A. arbuscula), black 

sagebrush (A. nova), and rigid sagebrush (A. rigida), as well as bitterbrush (Purshia 

tridentata), snowberry (Symphoricarpos sp.), shadscale (Atriplex confertifolia), and 

rabbitbrush (Chrysothamnus sp.).  The canopies of sagebrush ecosystems range from 30-

200 cm high, and tend to have significant gaps, with interstitial spaces either left bare or 

occupied by a diversity of grasses and forbs ranging up to 60 cm high.  These 

prominently include Idaho fescue (Festuca idahoensis), bluebunch wheatgrass 

(Pseudoroegneria spicata), needlegrasses (Stipa sp.), California brome (Bromus 

carinatus), squirreltail (Sitanion hystrix), and Sandberg’s bluegrass (Poa secunda).  Site-

level plant diversity ranges from 13 species in hot, xeric lowlands, up to 56 species in 
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relatively mesic uplands (Miller and Eddleman 2000).  The plant community is often 

underlain by a layer of biological crust (Knick et al. 2004, Miller and Eddleman 2000).   

 The climate of sagebrush ecosystems is highly variable, with significant effects on 

year-to-year abundance and diversity of herbaceous vegetation.  Wildfire is a 

characteristic disturbance of most sagebrush ecosystems, but data is lacking to 

reconstruct historical fire regimes with great accuracy in many of these ecosystems 

(Baker 2011). Mean fire return intervals likely varied widely among different sagebrush 

communities, and have been estimated to range from a few decades (Miller and 

Heyerdahl 2008) to well over 200 years (Bukowski and Baker 2013).  Historical wildfires 

were likely patchy but mostly high-severity, as sagebrush is easily killed by fire and even 

low-intensity fire can result in high mortality rates, and thus created a mosaic of 

community types ranging from early-successional grasslands to groves of mature shrubs 

and long-lived bunchgrasses and forbs (Baker 2011).   

EuroAmerican settlement of the intermountain western United States brought 

numerous changes to natural disturbance regimes and successional processes, as a result 

of land use, introduction of non-native plant species, anthropogenic wildfire ignition and 

suppression, and replacement of native ungulates with livestock.  Altered successional 

trajectories in areas historically occupied by sagebrush ecosystems are evinced by recent 

expansion of juniper/pinyon woodlands in some upland areas, and extensive invasion of 

annual weed communities in many mid- to low-elevation areas.  Since their introduction 

in the late 19th century, cheatgrass (Bromus tectorum), medusahead (Taeniatherum caput-

medusae), and other Eurasian grasses and forbs have replaced or severely invaded half or 

more of the historical sagebrush plant communities in the Great and Columbia Basins 
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(Knick et al. 2004).  This major degradation threat largely motivates the following 

research. 
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Chapter 2:  Use of Terrestrial Laser Scanning to Model Fuel 

Characteristics in Shrub-Steppe 

Abstract 

Invasion by non-native plants, climate change, and other factors are altering ecosystem 

processes in sagebrush steppe shrublands of the western U.S., with notable effects on 

vegetation composition, fuels structure, and fire regimes.  In particularly arid regions, 

wildfires are contributing to a conversion of native shrublands to communities dominated 

by fire-prone invasives via a positive feedback loop, which can result in long-term 

degradation of burned areas.  Efficient methods of vegetation inventory over large areas, 

such as remote sensing, are essential to understand and manage changes in vegetation 

conditions and to anticipate future wildfires.  However, the application of information 

collected from aerial or satellite platforms to shrub-steppe ecosystems at a local scale is 

limited by spectral signal mixing and coarseness of data relative to low-stature 

vegetation. Terrestrial laser scanning (TLS) technology provides rapid collection of high-

resolution structural information at ranges up to hundreds of meters, offering an 

opportunity to efficiently record vegetation characteristics in large swaths.  We tested the 

ability of TLS-derived indices to predict biomass and canopy cover of several vegetation 

classes in shrub-steppe plots in southwestern Idaho, using data collected at 1 m quadrats 

to train models constructed using the Random Forests algorithm.  We show that TLS 

window statistics of point geometry can be used to predict canopy cover fraction of 

annual grasses, perennial grasses, forbs, bare earth/litter, and shrubs, and biomass of 

herbaceous vegetation and shrubs, with models varying in strength between R2 = 0.28 

and R2 = 0.72.  
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2.1. Introduction  

The sagebrush steppe biome occupies 47 million ha of semiarid rangelands in the 

western United States (Bukowski and Baker 2013) and is in rapid decline.  Within the 

upper Snake River sub basin, Idaho, sagebrush steppe ecosystems presently cover less 

than 58% of their historical range (NPCC 2004).  While conversion to agriculture and 

urban development accounts for a portion of this loss, the majority is due to altered 

regimes of succession resulting from invasion by non-native grasses and forbs.  In a 

phenomenon known as the “grass-fire cycle” (D'Antonio and Vitousek 1992, Knick et al. 

2004), the presence of cheatgrass (Bromus tectorum), medusahead (Taeniatherum caput-

medusae), and other alien annual plants adds fine dry biomass to shrubland fuelbeds, with 

the effect of increasing the rate and severity of wildfire events.  After burns, these 

invasives rapidly fill cleared areas, outcompeting native plants for water and space.  After 

several cycles of progressively larger proportions of alien annuals promoting 

progressively more frequent and severe wildfires, the plant community is reduced to a 

steady state of pyric annual grassland (Balch et al. 2013, Knick 1999).  Deleterious 

consequences of this shift include increased wildfire hazard, decreased soil retention, 

decreased grazing productivity, and loss of biodiversity (Brooks et al. 2004, D’Antonio 

and Vitousek 1992, Sankey et al. 2012). 

How best to manage and mitigate the degradation of sagebrush-dominated 

rangelands is a topic of ongoing research (e.g. Shinneman et al. 2011).  Towards this, 

efficient and accurate methods to inventory vegetation in rangeland ecosystems are 

needed to collect baseline information about plant community characteristics, evaluate 

wildfire risk, and assess the impact of landscape treatment efforts.  Historical efforts to 
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take stock of rangeland vegetation have relied on hand-measured metrics, such as transect 

and frame-based measurements in plot-scale studies (Davies et al. 2012), and harvested 

dry weight and various volume derivations for studies at the scale of individual plants 

(Uresk et al. 1977).  These manual methods are accurate, but limited in scope by 

manpower and logistics.    

Remote sensing technology offers the ability to extend measurements of 

vegetation traits across the vast and often-remote rangeland landscapes of the western 

United States.  However, the small stature, mute color, and sparse canopies of individual 

plants, and their sparse arrangement across the landscape, poses challenges to 

interpretation of spectral data, and efforts to apply spectral remote sensing to shrub-

steppe inventory have been limited to qualitative mapping of broad ecosystem types 

(Jacobson and Synder 2000, Knick et al. 1997, Okin et al. 2001).  Similarly, the utility of 

remote sensing via aerial laser scanning is limited by the low point density and high error 

of typical collections, relative to low-stature rangeland vegetation (Mitchell et al. 2011, 

Streutker and Glenn 2006). 

Allowing structural measurements at centimeter resolution at ranges extending to 

hundreds of meters, terrestrial laser scanning (TLS) provides an intermediate approach 

between highly-localized, precise field measurements and spatially-extensive, relatively-

coarse remotely-sensed measurements from aerial and satellite platforms.  A notable 

disadvantage of TLS sampling is that collections are prone to occlusion, where areas 

lying behind protrusions (e.g. shrubs) are blocked from the sensor’s line-of-sight.  This 

problem can be partially mitigated by scanning an area from several different angles. 

Past work has used TLS to predict biomass of individual sagebrush shrubs (Olsoy 
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et al. 2014a,b) and predict the height and crown area of individual shrubs across large 

plots (Vierling et al. 2013).  In this study, we used local measures of TLS point cloud 

geometry to model biomass and canopy cover of several rangeland vegetation types, 

using field measurements for training and validation.  We demonstrate the ability of TLS 

imagery to predict vegetation characteristics across large plots without explicitly 

classifying or delineating individual plants. 

Models were derived using Random Forests regression analysis.  Often applied to 

“wide” datasets where the number of predictor variables approaches or exceeds the 

number of measurements, the Random Forests algorithm employs a multitude of decision 

trees to model the most likely response to each combination of predictor variables 

(Breiman 2001).  Instead of calculating true R2 and RMSE values, for each tree the 

algorithm splits data into training and testing datasets, measuring model performance in 

each tree as fit to 37% data retained as an “out-of-bag” testing datasets preventing 

problems of over-fitting (Breiman 1996).  Previous work has applied Random Forests to 

model vegetation structure using window measurements of LiDAR point cloud geometry 

(Hudak et al. 2008, Mitchell et al., in review), although we are not aware of any work 

using the algorithm to make predictions based on TLS point clouds.  Random Forests 

creates models which often maximize predictive power, but these models are “black 

boxes” where the mechanism of relationships is explicitly unknown.  The algorithm was 

well-suited to this study as both our predictor and training data proved complex and 

without intuitive correlations, and because we prioritize predictive power over clearly-

defined mechanisms of relationships. 
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2.2. Methods 

Study area 

 The study area is located within the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA), which encompasses 242,773 ha of the Snake River 

Plain ecoregion in southeastern Idaho, USA (Figure 2.1).  In an average year, the NCA 

receives 20 cm of precipitation, 74 days with a high temperature greater than 32° C, and 

98 days with a low temperature below 0° C (WRCC, 2012).  Surface geology consists 

mainly of plateaus and rolling uplands of windblown soils, interspersed by basalt 

outcrops. 

The native flora assemblage is composed of an understory of biological crusts and 

sparse native bunchgrasses, overlain by an open canopy of shrubs ranging up to 2 m tall.  

While big sagebrush (Artemisia tridentata) is dominant regionally, numerous other shrub 

species contribute diversity and may be individually most common at the site level. 

Although wildfire events are historically rare in the NCA, over half of the area 

has burned since 1980.  The resulting landscape is a mosaic of plant communities, with 

compositions spanning a gradient between intact native shrublands, shrublands degraded 

by biological invasion and wildfire, and grasslands where native plants have been fully 

replaced by cheatgrass and other invasive annuals.  Currently 37% or less of the NCA 

retains an intact native shrubland community.  Active management on the NCA to 

promote native vegetation and reduce wildfire hazard includes strategic grazing, 

mechanical planting of native species, and mowing (USDI BLM 2008).  

Data Collection 

 Square plots (n = 26, 1 ha in area) for manual and TLS sampling were established 
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at locations throughout the western NCA, using a stratified random sampling approach. 

The sites were selected to capture a variety of plant community compositions and for 

accessibility.  In the center of each plot, a 3 x 3 grid of 1 m2 quadrats was established, 

with 25 m spacing between adjacent quadrats.  Over the 26 plots, a total of 234 quadrats 

were established. 

 The corners of each plot were precisely located using a survey-grade GNSS 

receiver, and elevated reflector discs were deployed at each corner to provide control 

points for coregistration and georegistration of TLS scans.  A small, elevated reflector 

was placed at the center point of each quadrat as a marker to facilitate precise location in 

the TLS point cloud. 

TLS collection was performed using a Riegl VZ-1000 near-infrared scanner 

mounted on a 2 m tripod.  At a range of 100 m, this instrument has a reported accuracy of 

σ = 8 mm and a beam divergence of 30 mm (Riegl, Austria).  Single-return scans were 

performed with 0.02 degrees of separation between pulses.  Plots were scanned from five 

positions, once from the approximate midpoint of each side and once from the 

approximate plot center.  Slight leeway in scanner location selection allowed for 

adaptation to reduce occlusion in each scan.  

 A nadir photograph was collected from 1.5 m above each quadrat, imaging an 

area approximately 1 x 1.5 m.  Photographs were classified by species at 100 gridded 

points, providing an estimate of quadrat canopy composition.  This information was 

aggregated to estimate canopy cover of the following classes: bare earth/litter, annual 

grasses, perennial grasses, forbs, and shrubs.  Aboveground vegetation within the quadrat 

was then harvested and categorized as shrub or herbaceous.  Where shrubs were too 



18 

 

bulky to be harvested efficiently, a portion was collected for reference, and the number of 

equivalent portions remaining in the quadrat was estimated.  Harvested vegetation was 

kiln-dried before weights by class were recorded.  All manual sampling was performed 

by staff of the USGS Forests and Range Ecosystem Science Center, in Boise ID 

(Shinneman et al. 2011).  These canopy cover and biomass data were used to train and 

validate interpretation of TLS datasets. 

Figure 2.1. The study area located in southwest Idaho, USA.  The Morley Nelson Snake River Birds of 

Prey National Conservation Area is outlined in red, and research plots (n = 26) are show as black stars. 

 
 All TLS sampling was performed between May 15 and June 14, 2013.  By this 

date grasses and forbs were mostly senescent, but structurally intact.  Manual sampling 

was carried out an average of 10 days after TLS sampling, with the exception of 6 plots 

which were manually sampled between 136 and 142 days later (Table A.3).    
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Table 2.1.  Window statistical descriptors calculated about TLS point distribution.  The minimum, 

maximum, standard deviation, range, and mean of each descriptor within the bounds of each quadrat were 

used as predictor variables of each feature.    

Statistic 

5th percentile height 

10th percentile height 

25th percentile height 

50th percentile height 

75th percentile height 

90th percentile height 

95th percentile height 

Canopy relief ratio 

Coefficient of variation of heights 

Count of all returns 

Count of ground returns 

Count of vegetation returns 

Interquartile range of heights 

Kurtosis of heights 

Maximum height 
Mean absolute deviation from mean height (AAD) 

Mean of heights 

Median absolute deviation from median height (MAD) 

Minimum height 
Percent of area covered by vegetation 

Percent of heights between 0 and 1 m tall 

Percent of heights between 1 and 2.5 m tall 

Percent of returns modeled as ground 

Range of heights 

Skewness of heights 

Standard deviation of heights 

Texture of heights (standard deviation of heights between 5 cm and 15 cm) 

Total vegetation density (((count of vegetation points)/(count of ground points))*100) 

Variance of heights 

Processing  

 TLS point clouds were subsampled to a minimum spacing of 1 cm between 

points.  Any spurious points, and points representing the quadrat marker reflector, were 

manually removed.  Using the BCAL LiDAR Tools software 

(http://bcal.boisestate.edu/tools/lidar), ground filtering was performed and point clouds 

were converted to multiband rasters with pixel sizes 5 cm, 10 cm, and 20 cm.  Raster 

values were calculated as a suite of 29 statistical descriptors of TLS point distribution 

within the window of each pixel (Table 2.1).  The mean, minimum, maximum, range, and 
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standard deviation of all pixel-wise descriptors within each quadrat were recorded. 

Quality control 

 The portion of TLS point clouds within the bounds of each quadrat was visually 

inspected and assessed for further processing.  Quadrats were assigned a qualitative score 

of 1 (lowest quality) to 3 (highest quality) based on the number and spread of points 

modeled as ground within a plot (Figure 2.2).  Quadrats scoring “1” contain no ground 

points, quadrats scoring “3” contain several ground points in each quadrant, while 

quadrats scoring “2” contain ground points which are few or are not distributed 

throughout the quadrat.  This scoring method was chosen firstly because an insufficient 

distribution of ground points may cause erroneous modeling of vegetation height values, 

and secondly because the frequency and spread of ground points is a simple way of 

quantifying the extent of areas in a quadrat that were occluded from sampling.  

Additionally, quadrats where overall sampling coverage was exceptionally poor (the 

entire quadrat was in essence unsampled) were flagged and discarded. 

Figure 2.2.  Examples of TLS point cloud in quadrats assigned to each score.  Vegetation points are shown 

in green and ground points are shown in brown.  The boxes around points show the extent of the quadrat—

heights vary but each box has a 1 x 1 m base. 
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Random Forests Modeling 

 Random Forests regression (Salford Predictive Modeler Software Suite version 7, 

Salford Systems, San Diego, CA) was applied to derive a model predicting field-

measured vegetation characteristics using the mean, minimum, maximum, range, and 

standard deviation of TLS window statistics as predictor variables (e.g. the standard 

deviation of 10th percentile height values of all pixels in a quadrat), producing 145 

predictor variables in total.  The bulk of these predictors were of low influence in 

Random Forests models, and the inclusion of most actually decreased model performance 

in the testing dataset.  Optimal models were derived experimentally by iteratively 

removing lowest-influence predictor variables until this method decreased model R2.  

Each combination of the remaining predictor variables was tested, and the model was 

selected which minimized the number of predictor variables while retaining high R2 and 

low RMSE.  Where significant trade-offs were presented in measurements of model 

strength, the rationale was used that model accuracy (R2) was more important than model 

precision (RMSE), and both were more important than model parsimony (number of 

predictor variables).  Random Forests regression analysis was performed using each 

combination of window size and quality score. 

 To validate the assumption that data from each quadrat could be considered an 

independent sample (uncorrelated by plot), the residuals of each model were examined 

for each plot’s data.  We found that for each model, the residuals of modeled values from 

each plot appeared to be randomly distributed around 0, indicating that the relationship 

between manually-sampled values and TLS sampling does not change between plots 

(Figure A.1). 



22 

 

2.3. Results 

 Field-measured values of biomass and fractional canopy cover were highly non-

normal, with most biomass and cover estimates clustering near the low and high ranges 

of measurements.  Likewise, the standard deviation of measurements approached or 

exceeded the mean measurement of each variable (Table 2.2). 

Table 2.2.  Statistics describing the manual measurements of each predicted feature (n = 206). Minimum 

values were all 0.  

Feature 25th percentile Median 75th percentile Max Mean SD 

Shrub cover (%) 0.0 0.0 8.2 60.8 7.5 13.7 

Bare earth/litter cover (%) 13.1 43.1 61.4 94.0 40.8 27.1 

Annual grass cover (%) 0.0 13.0 73.3 100.0 34.5 38.0 

Perennial grass cover (%) 1 7.0 21.0 70 13.4 15.3 

Forb cover (%) 0.0 0.0 3.0 68 3.9 8.8 

Shrub biomass (g) 0.0 0.0 18.2 2476 106.2 321.6 

Herbaceous biomass (g) 56.6 97.1 179.8 1193.1 146.2 157.9 

  

Of the 234 quadrats collected, 28 were discarded due either to occlusion (poor 

sampling coverage) or obvious and irreparable locational errors in manually-sampled 

data.  Of the 206 remaining, 9 were assigned a score of 1, 98 were assigned a score 2, and 

99 received a score of 3 (Table A.2).  In spite of the large number of quadrats judged to 

be sampled suboptimally, the effect of limiting analysis to only high-scoring quadrats on 

model goodness-of-fit was not major (difference in R2 < 0.2 and generally near R2 = 0, in 

some cases shrinking the pool of data actually caused R2 to decrease) (Table A.1).  In the 

interest of demonstrating the resilience of this approach to suboptimal sampling, results 

are reported for models using the entire population of quadrats (except the 28 discards, 

remaining n = 206) for training and validation. 

 The pixel size (the window in which point cloud statistics were calculated) 

yielding the best model varied among the measurement being predicted.  Descriptors 
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calculated using a 5 cm pixel size yielded the strongest predictors for shrub cover (R2 = 

0.72, RMSE = 7.3%), annual grass cover (R2 = 0.61, RMSE = 23.7%), and forb cover (R2 

= 0.53, RMSE = 6.1%).  A 10 cm pixel size yielded the strongest predictors of perennial 

grass cover (R2 = 0.28, RMSE = 12.9%), bare earth/litter cover (R2 = 0.40, RMSE = 

20.9%), and shrub biomass (R2 = 0.64, RMSE = 191.7 g), and a 20 cm pixel size yielded 

the strongest predictors of herbaceous biomass (R2 = 0.55, RMSE= 106.5 g).   

All predictive models yielded by the Random Forests algorithm achieved 

maximum goodness-of-fit using 4 or fewer predictor variables.  While the combination of 

predictors used is inconsistent among models, some predictors (e.g. maximum of 50th 

percentile heights) are used more commonly than others.  The predictors and pixel sizes 

used and measures of strength are recorded in Table 2.3.    

2.4. Discussion 

 Using contemporaneous collection of TLS and manually-sampled datasets, this 

study demonstrated the potential of TLS to predict canopy cover and biomass of several 

vegetation classes at the 1 m scale, across large plots.  With these methods TLS 

collections may be used as a powerful complement to manual sampling, by using 

localized measurements to train models of vegetation characteristics across broad, 

contiguous areas.  These results extend the known capabilities of TLS collections in 

sagebrush-steppe ecosystems, which have previously been demonstrated to enable 

detection and prediction of height and crown area (Vierling et al. 2013), and precise 

biomass prediction (Olsoy et al. 2014a,b), of individual sagebrush shrubs.   

 Generally, the accuracy of our models was high, as indicated by R2 values above 

0.5.  However, precision was low, as indicated by RMSE values ranging between 55% 
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and 195% of mean manual measurements.  Considering numerous likely sources of error 

(discussed below) in our methodology, it is unsurprising that model predictions are rough.  

Future studies which duplicate our methods may accommodate accurate but imprecise 

modeling of features by treating predictions as categorical, thus generalizing them.  It is 

also likely that future studies could improve model precision by collecting finer scale 

manual measurements for training and validation, and by removing some of the errors in 

sampling that we encountered. 

Table 2.3.  Strength, pixel size used to calculate point cloud geometry, and predictors listed by relative 

importance of the selected Random Forests models (n = 206).  

Feature Pixel size  Predictors R2 RMSE 

Annual grass cover 5 cm 1. Maximum of 50th percentile heights  

2. Standard deviation of minimum heights 

3. Mean of 50th percentile heights 

0.61 23.7% 

Bare earth/litter cover 10 cm 1. Maximum of 50th percentile heights 

2. Mean of  % of heights between 0 and 1m 

3. Mean of 50th percentile heights 

0.40 20.9% 

Forb cover 5 cm 1. Mean of 50th percentile heights 

2. Maximum of 50th percentile heights 

3. Minimum of 50th percentile heights 

4. Mean of kurtosis of heights 

0.53 6.1% 

Perennial grass cover 10 cm 1. Maximum of 50th percentile heights 

2. Minimum of coefficient of variation of heights 

3. Mean of absolute deviations from median height 

4. Maximum of minimum heights 

0.28 12.9% 

Shrub cover 5 cm 1. Standard deviation of maximum heights 

2. Standard deviation of 75th percentile heights 

3. Maximum of maximum heights 

4. Maximum of 50th percentile heights 

0.72 7.3% 

Herbaceous biomass 20 cm 1. Mean of  % of returns modeled as ground 

2. Range of 5th percentile heights 

3. Mean of minimum heights  

4. Maximum of 50th percentile heights 

0.55 106.3 g 

Shrub biomass 10 cm 1. Mean of count of vegetation returns   

2. Mean of mean heights 

3. Mean of absolute deviations from median height 

4. Mean of  % of returns modeled as ground 

0.64 191.7 g 

 

 Two predictive models, those of perennial grass cover and bare earth/litter cover, 

substantially underperformed the others.  In the case of perennial grass cover, we think 
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that consistent identification was likely challenged by the diverse sizes of perennial 

grasses, which varied greatly depending on species and site.  In particular, there is little 

structural difference between small perennial grasses (e.g. short specimens of sandberg’s 

bluegrass, Poa secunda) and annual grasses such as cheatgrass.  Meanwhile, though the 

distinct flatness of the bare/earth litter class suggests that it would be easily classified 

apart from vegetation cover classes, as the lowest-lying class it was also the most likely 

to be unsampled due to occlusion.  Since our calculation of quadrat-wise statistics 

excluded occluded pixels from consideration, it is probable that the signal of bare 

earth/litter was often simply lost.   

 Successfully applying grid-based statistical metrics of TLS-derived shrub height 

and geometry to model class-wise canopy cover and biomass demonstrates that 

vegetation characteristics may be predicted using remotely-sensed datasets without 

explicit classification and delineation of plants.  This capability is especially valuable 

when complementary manual sampling is performed on a per-area, rather than per-plant 

basis, as was the case in this study.  Additionally, Vierling et al. (2013) noted that 

automated detection and delineation of sagebrush shrubs <1.5 m diameter using TLS 

point clouds was challenging, which suggests that window-based approaches may be 

most effective to predict characteristics of small-stature rangeland plants.   

 Predicting canopy cover and biomass without attempting to delineate individual 

plants offers some disadvantages.  Allometric relationships between plant geometry and 

biomass would be expected to be strongest when a single, complete plant is considered.  

By contrast, data collected in this study may consider only portions of plants, and group 

several plants and even several plant types together into a measurement.  For example, 
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entire shrubs and single shrub boughs have different relationships between bulk structural 

geometry and biomass because single boughs do not contain large and weighty trunks.  In 

the common instance where a quadrat containing annual grasses was overhung by a shrub 

bough, a correct model of class-wise biomass needed to account for not only the presence 

of two classes of vegetation, but also the particular relationship of geometry to biomass 

for the pertinent portion of a shrub.  For a model based on statistics that describe TLS 

point cloud geometry within the quadrat as a whole, this is a challenging task.  Likewise, 

not explicitly classifying vegetation types adds to potential confusion in modeled values 

where different vegetation types exhibit similar measurements of geometry after values 

are aggregated for entire quadrats.  For example, several tall, narrow, individual 

bunchgrasses may exhibit measurements of geometry resembling those of a single large 

and wide shrub, when data from throughout the quadrat is aggregated into a single value.  

These factors may partly explain the lower strength of our models compared to estimates 

of shrub biomass (or volume, a precise proxy) in studies focused on individual plants 

(e.g. Kaluza et al. 2012, Loudermilk et al. 2009, Olsoy et al 2014a,b).   

 The collaborative collection of field data introduced idiosyncrasies to our 

datasets, which may contribute substantially to model error.  Estimates of class canopy 

cover were derived from photographs 1 x 1.5 m in extent, rather than the 1 x 1 m extent 

of quadrats, and because photos were not oriented consistently it was not possible to 

adjust the considered portion of TLS point clouds to correspond with the extent of the 

photo.  Small errors of rotation and translation in harvest quadrat placement may 

introduce substantial errors to our analysis where a large portion of the canopy cover or 

biomass of a vegetation class falls close to a quadrat's edge.  The method of harvesting 
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only a portion of large shrubs may also introduce substantial error in shrub biomass 

measurements if the collected portion is not adequately representative of the shrub as a 

whole, or if the number of portions remaining in the quadrat was incorrectly estimated.  

Although growth and decomposition of vegetation is slow in our field area, the delay 

between TLS and manual sampling allowed time for herbivory, wind, and other factors to 

alter vegetation before manual sampling was performed.  Each of these sources of error 

could be minimized in future efforts.    

 A final source of error worth mentioning is the potential for confusion introduced 

by forbs species (e.g. tall tumble mustard, Sisymbrium altissimum) that have a strong 

structural similarity to shrubs.  A disadvantage of relying exclusively on structural indices 

is the inability to distinguish between vegetation types with roughly the same shape.  

However, forbs resembling shrubs tend to be concentrated on the landscape and were 

common within only a few of our plots (Table A.4).  Future studies might overcome this 

confusion by integrating high-resolution spectral information gathered from airborne or 

satellite platforms.  Unfortunately, although “intensity of return” values recorded by 

many TLS instruments (which indicate the spectral reflectance of targets at the laser 

bandwidth) may be used to classify different vegetation types sampled at close ranges 

(Olsoy et al. 2014a,b), we found that the intensity of return yielded by a given target was 

not consistent at different ranges, hindering the usefulness of this data in parsing targets 

across large plots. 

 We found that the window size used to calculate TLS point cloud geometry 

descriptors affected the strength of models, but that no window size was consistently 

superior.  While the mechanism driving this effect is unclear, it suggests that the ideal 
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trade-off between fine-scale measurement of point cloud geometry and measurement 

resilience to fine-scale stochasticity in TLS point clouds differs depending on the 

characteristic being modeled. Moreover, this trade-off exists despite window 

measurements in each quadrat eventually being aggregated.  In general it appears that 5 

and 10 cm windows outperform 20 cm windows, but our analysis suggests that it is worth 

testing several window sizes to derive the strongest predictors of each field measurement.  

 Though the strength of some models did improve when considering only quadrats 

judged to have optimal sampling quality, we were able to derive satisfactory models 

predicting all field-measured features while excluding only the 28 quadrats which were 

almost entirely unsampled.  This is remarkable considering that a minority of quadrats 

were judged to have been sampled optimally, and demonstrates the resilience of our 

window statistics-based models to both the presence of occluded regions within quadrats 

and small errors in modeled vegetation height arising from spotty ground-level sampling. 

  Although the 5-position TLS sampling methodology provided highly-redundant 

coverage in general, sampling occlusion was still a major challenge in this study that led 

to a large amount of data being discarded.  Occlusion was most problematic in plots with 

high shrub cover, where interstitial spaces lying more than a few meters from scanning 

positions commonly escaped the instrument’s line-of-sight from all 5 scan positions. 

Consequently, only the upper canopies of tall shrubs were reliably sampled.  This 

problem could be partially avoided by elevating the scanner far above the typical 

vegetation height, as done in Vierling et al. 2013, or by increasing the number of 

scanning positions. 

 In sum, we demonstrate the use of TLS to predict measurements of canopy cover 
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and biomass of different rangeland vegetation types across 1 ha plots.  These methods 

may improve the efficiency of ground-based vegetation inventory while providing 

information at superior resolution to datasets collected from airborne or satellite sensors.  

We show that an ensemble learning algorithm yields parsimonious and accurate models 

relating window statistics of TLS point cloud geometry to field-measured values, despite 

difficulties arising from shadowing in TLS point clouds and training and validation data 

that were collected at relatively coarse scales and not focused on individual plants. 

 The methods demonstrated here have immediate applicability to research in 

shrub-dominated rangelands.  The ability to accurately inventory vegetation across large 

plots may extend the scope of current work to evaluate landscape fuel treatments, which 

presently rely on highly localized manual sampling measurements.  Our methods as 

presented offer vastly increased efficiency and spatial thoroughness of vegetation 

inventory over traditional techniques, although at the cost of measurement precision.  

TLS-based models of vegetation characteristics may also serve as a stepping stone to 

even broader sampling methods by providing information to train interpretation of data 

collected from aerial or satellite platforms.  Another application of spatially-explicit 

vegetation inventory enabled by TLS is as realistic, high-resolution input data to 

simulations, such as those of wildfire behavior or aeolian processes.  In general, TLS 

collections enable creation of broad and rich models of vegetation at low logistical cost, 

which may aptly serve a wide variety of research and management needs. 
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Chapter 3.  Methodological Considerations of Terrestrial Laser 

Scanning in Rangelands 
 

Abstract 

Terrestrial laser scanning (TLS) provides fast collection of high-definition structural 

information, making it a valuable field instrument to many natural science disciplines.  A 

weakness of TLS collections is the issue of “shadowing”, unsampled regions that occur in 

point clouds where the sensor’s line-of-sight is occluded during sampling.  This problem 

may be mitigated by scanning target areas from several positions, increasing the chance 

that any given area will fall within the scanner’s line-of-sight from at least one position.  

Although many studies employ this method, most only incidentally describe shadowing 

problems and methods used to resolve them.  Because TLS collections are often 

employed in remote regions where the scope of sampling is limited by logistical factors 

such as time and battery power, field protocols which maximize efficiency may increase 

the quantity and quality of data collected.  This study aims to inform researchers seeking 

to optimize TLS methods in rangeland ecosystems through three analyses:  First, we 

quantify the 2D extent of shadowed regions as an effect of range from scanning position.  

Second, we measure the efficacy of additional scanning positions on the reduction of 2D 

shadowed regions using progressive configurations of scan positions in hectare plots.  

Third, we test the reproducibility of 3D sampling yielded by a 5 scan per hectare 

sampling methodology using redundant sets of scans.  Analyses were performed using 

measurements at several scales, and considered plots in grass-dominated and shrub-

dominated communities separately.  Future studies applying TLS in similar environments 

may use our results as a guide to efficiently achieve predetermined standards of sampling 

coverage and reproducibility in datasets. 
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3.1. Introduction 

 Laser scanning, commonly called light detection and ranging (LiDAR), refers to 

technologies using laser pulse ranging measurements to record precise structural 

information about targets.  Three dimensional point clouds yielded by laser scanners have 

proven valuable to natural sciences, particularly for broad-scale measurements of 

vegetation and topography.  While most LiDAR datasets used in natural science research 

thus far were collected aerially, recent improvements in technology have led to expanded 

use of terrestrial laser scanning (TLS) instruments.  Ground-based sampling offers 

several unique advantages, including ultra-high data resolution, below-canopy sampling, 

and low cost of collection (Heritage and Large 2009).  The rapidly-growing body of work 

using TLS in field studies includes measurements of fine-scale geomorphology (Brodu 

and Lague et al. 2012), and inventory of forests (Strahler et al. 2008), shrublands 

(Vierling et al. 2013), and low-lying vegetation (Loudermilk et al. 2009). 

 A notable disadvantage of scanning from the ground is the issue of occlusion 

(shadowing) in point clouds, where the scanner’s line-of-sight to a region is blocked by 

intervening objects.  In aerial collections, a narrow scan angle and field-of-view cause the 

effects of occlusion to be highly regular, so that sampling is limited to topmost surfaces 

but 2D spatial coverage is largely unaffected.  In TLS collections however, mainly-lateral 

scanning orientation may leave large data gaps where extended regions are shadowed by 

protruding vegetation or topographic features.  These data gaps often cause TLS point 

clouds to be highly irregular, with regions with good sampling coverage falling 

immediately adjacent to regions that are unsampled entirely.  Some aerial and terrestrial 

instruments enable partial mitigation of shadowing through detection of multiple returns 
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of light from each pulse, allowing for sampling of several in-line targets when the first 

target intercepts only a portion of a pulse’s footprint.  However, these secondary 

measurements are at increased risk of “zig-zag” pulse paths that reflect off several 

surfaces and other complications which reduce positional certainty (Shan and Toth 2008). 

 Some studies have accounted for shadowing in TLS datasets by modeling 

unsampled features based on features which are sampled.  For example, Stahler et al. 

(2008) infer the number of fully-occluded tree stems based on the width and density of 

stems that are sampled, and Henning and Radtke (2006) model plant area index in 

volumetric regions of canopy based on the ratio of reflection to pass-through of pulses 

incident to each region, rather than simply measuring the plant area that is actually 

sampled. 

  Several methodological techniques have been shown to reduce shadowed areas in 

TLS collections.  Some improvement in sampling coverage may be effected by elevating 

the instrument well above the objects in the target region, which causes shadows to fall 

beneath protrusions rather than stretching out laterally from them.  This has been done 

using both topographically elevated scanning position sites (Vierling et al. 2013) and 

elevated scanning platforms (Loudermilk et al. 2009).  The most common practice may 

be to combine scans collected at several positions, increasing the likelihood that a region 

will fall in the scanner’s field-of-view from at least one position.  This technique may be 

implemented using either a standardized layout of scanning positions or one that is 

adaptive to local features, and has proven useful in both studies sampling extensive plots 

and ones focusing on individual target plants (Clawges et al. 2007, Seidel et al. 2012).  A 

similar technique is the fusion of aerial and TLS point clouds, providing complementary 
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sampling from both above and below forest canopies (Chasmer et al. 2004, Murgoitio et 

al. 2014). 

 Although many studies employ methods to overcome shadowing problems in TLS 

collections, published research that quantifies the efficacy of these techniques is scarce.  

A small body of literature does exist which evaluates the errors in TLS-derived elevation 

models caused by low vegetation occluding the ground surface (e.g. Coveney and 

Fotheringham 2011, Fan et al. 2014).  The only work we are aware of which explicitly 

studies the extent of unsampled regions as a consequence of occlusion is Van der Zande 

et al. (2008), which evaluates the efficacy of two scanning position arrangements 

(“diamond” and “corners”) against a single scanning position and each other at reducing 

shadowing in simulated forest plots.  They found that both arrangements of positions 

outperformed sampling from a single position, even when the single scan was of much 

higher sampling density, but that neither arrangement yielded consistently superior results 

to the other. 

 Terrestrial laser scanning may be increasingly important as a research tool in 

shrublands and grasslands (e.g. Olsoy et al. 2014, Vierling et al. 2013), and its use in 

remote field sites is challenged by logistical concerns including time and battery power.  

Information about the limitations of TLS sampling may improve the efficiency of field 

campaigns by preventing over- or under-expenditure of effort given sampling goals.   

The objective of this study is to test the extent of TLS shadowing in rangeland 

ecosystems and the efficacy of methods to mitigate shadowing given the common 

instrumentation of a laterally-scanning instrument mounted on a 2 m base.  Towards this, 

we designed three experiments testing: 1) the effect of range-from-scanner on the extent 
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of shadowed regions; 2) the effectiveness of multiple scanning positions at reducing total 

shadowed area in 1 ha plots; 3) the reproducibility of datasets yielded by a methodology 

employing 5 scans per hectare.  All results are stratified by vegetation type, either 

dominantly grassland or shrubland, and several scales of measurement. 

3.2. Methods 

Study area 

The study area is located in the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA), which encompasses 242,773 ha of the Snake River 

Plain ecoregion in southeastern Idaho, USA (Figure 2.1).  In an average year, the NCA 

receives 20 cm of precipitation, 74 days with a high temperature greater than 32° C, and 

98 days with a low temperature below 0° C (WRCC, 2012).  Surface geology consists 

mainly of plateaus and rolling uplands of loess windblown soils, interspersed by basalt 

outcrops.  In some areas, microtopographic texture is added by pits and mounds caused 

by burrowing animals. 

The native vegetation assemblage is composed of an understory of biological 

crusts and sparse native bunchgrasses, overlain by an open canopy of shrubs ranging up 

to 1.5 m tall.  Big sagebrush (Artemisia tridentata) is dominant regionally, and numerous 

other shrub species contribute diversity and may be dominant at the site level. 

Although wildfire events are historically rare in the NCA, over half has burned 

since 1980.  The resulting landscape is a mosaic of plant communities, with compositions 

spanning a gradient between intact native shrublands, shrublands degraded by biological 

invasion and wildfire, and grasslands where native plants have been fully replaced by 

cheatgrass (Bromus tectorum) and other invasive annuals.  Currently 37% or less of the 
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NCA retains an intact native shrubland community.  Active management on the NCA to 

promote native flora and reduce wildfire hazard includes strategic grazing, mechanical 

planting of native species, and mowing (USDI 2008). 

Data Collection 

 Plots (n = 26, 1 ha in area) for field and TLS sampling were established at 

locations scattered throughout the NCA, with sites divided evenly between intact or semi-

intact shrublands and invasive weed communities.  The corners of each plot were 

precisely located using a survey-grade GNSS receiver, and elevated reflector discs were 

deployed at each corner to provide control points for coregistration and georegistration of 

scans.  

The collection of TLS data was performed using a Riegl VZ-1000 near-infrared 

(1550 nm) scanner mounted on a 2 m tripod.  At a range of 100 m, this instrument has a 

reported accuracy of σ = 8 mm and a beam divergence of 30 mm (Riegl, Austria).  

Single-return scans were performed with 0.02 degrees of separation between pulses.  

Plots were scanned from five positions, once from the approximate midpoint of each side 

and once from the approximate plot center.  Slight leeway (< 5 m) in scanner location 

selection allowed for adaptation to reduce occlusion in each scan.  

Each plot was classified as “shrub” (n = 13) or “grass” (n = 13), based on the 

dominant community type.  Proper classification was unambiguous and depended on 

whether the area had experienced a severe stand-replacing fire.  In addition to cheatgrass 

and other low-lying (< 25 cm) herbaceous vegetation, grass plots sometimes contained 

tall bunchgrasses and structurally-sparse forbs.  Vegetation in each plot was quantified 

manually at 9 systematically-positioned points using several methods: 1) a downward-
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facing photograph was classified by landcover, allowing measurement of the unvegetated 

area over a 1 x 1.5 m extent; 2) the maximum height of vegetation falling in a 1 m2 

quadrat centered on each point was measured; 3) the distance in 4 cardinal directions 

from each point to the nearest tall bunchgrass and shrub was recorded, enabling 

estimation of the spatial density of individuals of both plant types 

where: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑝𝑒𝑟 𝑚2  =
1

(𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑡𝑜 𝑠𝑡𝑒𝑚)2   ; 4) the canopy-spanning 

distance of the nearest tall bunchgrass and shrub in 4 cardinal directions from each point 

was measured along a line intercepting the point, allowing estimation of canopy cover 

fraction of both plant types assuming a circular canopy shape where: % 𝑐𝑎𝑛𝑜𝑝𝑦 𝑐𝑜𝑣𝑒𝑟 =

 𝑚𝑒𝑎𝑛((0.5 ∗  𝑠𝑝𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2  ∗  𝜋) ∗ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑝𝑒𝑟 𝑚2 ∗ 0.01 .  The values 

recorded at all 9 points were averaged for each plot, and the average and standard 

deviation of these plot average values are reported for all grass and shrub plots in Table 

3.1.  Elevation models of each plot derived from TLS data showed generally smooth 

elevation gradients of < 5%.   

In 4 of the plots (shrub (n = 2) and grass (n = 2)), the scanning position layout was 

duplicated at a rotation of 45 degrees, yielding 2 independent sets of 5 scan positions 

(Figure 3.3).  Although the square hectare plots aligned with each set of scans were 

rotationally offset, they shared a central 8283 m2 region and thus we used this area for our 

analyses. 

All TLS sampling was performed between May 15 and June 14, 2013.  By this 

date grasses and forbs were mostly senescent, but structurally intact.   

Processing 

 To test the effect of range on the proportion of unsampled area, the scan 
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performed at the center of each plot was rasterized, with binary pixel values indicating 

the presence or absence of one or more samples measured within the pixel.  The number 

of sampled pixels falling in 3 m intervals in range from scan position was tallied for the 

intervals 3 - 6 m through 96 - 99 m (Figure 3.1).  The fraction of sampled area in each 

interval ring was calculated as the pixel size times the count of sampled pixels, divided 

by the area of the ring.  This analysis was performed using 5 cm, 20 cm, and 50 cm 

pixels. 

Table 3.1 Vegetation characteristics measured at each plot aggregated by plot type (n = 13 of each).  

Reported values describe per-plot measurements (e.g. “Standard deviation of unvegetated area” describes 

the standard deviations of per-plot estimates of unvegetated area for all grass and shrub plots, where per-

plot estimates are the averages of unvegetated ground cover measurements at 9 points within the plot).   

Plot type Grass Shrub 

Average unvegetated area 19.9% 33.5% 

Standard deviation of unvegetated area 13.4% 18.9% 

Average maximum height 44.3 cm 56.5 cm 

Standard deviation of maximum heights 7.4 cm 9.9 cm 

Average spatial density of tall bunchgrasses 0.2 m-2 0.1 m-2 

Standard deviation of spatial density of tall bunchgrasses 0.2 m-2 0.1 m-2 

Average canopy cover of tall bunchgrasses 1.9% 0.3% 

Standard deviation of canopy cover of tall bunchgrasses 2.8% 0.4% 

Average spatial density of shrubs 0.1 m-2 0.9 m-2 

Standard deviation of spatial density of shrubs   0.3 m-2 0.8 m-2 

Average canopy cover of shrubs 1.6% 17.3% 

Standard deviation of canopy cover of shrubs 3.8% 7.8% 

  

To test the effectiveness of additional scanning positions at increasing the extent 

of sampling in datasets, we measured the sampled area yielded by 3 configurations of 

scan positions in each plot: a single center position, 3 in-line positions with 1 at the plot 

center and 2 on opposing edges, and 5 scans in a cross shape (Figure 3.2).  Each of these 

configurations exhibits four-fold symmetry around the plot center, and are “nested” in 

that the 3- and 5-scan configurations consist of the next smaller configuration plus 2 new 

scans.  The point cloud corresponding to each configuration was rasterized into binary 
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pixels indicating presence or absence of sampling measurements, and the number of 

sampled pixels in the 1 ha plot was tallied for each.  Since 2 arrangements of 3 in-line 

scan positions were possible with the available data, we used the average count of 

sampled pixels yielded by both.  The analysis was performed for 5 cm, 20 cm, and 50 cm 

pixels.  Additionally, this analysis was performed at the 4 plots where extra scanning was 

performed, allowing nested configurations of 1, 3, 5, and 9 scan positions which 

exhibited four-fold symmetry.  Where multiple arrangements of each configuration 

existed, all were performed and the resultant counts of sampled pixels were averaged. 

Figure 3.1.  The center scan at each plot (n = 26) was divided into 3 m intervals from 3 - 6 m to 96 - 99 m 

from the scanner, and the proportion of sampled area in each interval was recorded.  This figure shows a 1 

ha shrub plot with light-colored sampled areas and black shadows, with red bands representing the 

boundaries between range intervals. 

 

 
Figure 3.2.  The nested scan position configurations used to study the utility of additional scanning effort.  

The configurations of scans including each position (configurations of 1, 3, or 5 scan positions) are 

indicated. 
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 To test the reproducibility of sampling using differently-positioned 

implementations of a geometrically-consistent 5 scan position layout, we compared the 

independent point clouds yielded by the 2 sets of scans at the 4 plots where redundant 

sampling was performed (Figure 3.3).  Point clouds were cropped to the 8283 m2 region 

central to both sets of scans, and generalized into voxels (3D cubic regions).  For each 

plot, a fraction was calculated where the denominator was the average number of voxels 

recorded in each set of scans, and the numerator was the number of voxels which were 

sampled commonly to both sets of scans.  This indicated the fraction of data which would 

be sampled reliably by the scanning position layout regardless of its particular alignment 

relative to the plot.  The analysis was performed for 5, 10, 20, and 50 cm voxels. 

Figure 3.3.  The redundant sampling scheme used to test repeatability of point cloud datasets yielded by a 

5 scan/plot methodology (n = 4).  The squares including blue and yellow regions represent differently-

aligned 1 ha plots, black and grey points represent independent sets of 5 scans with theoretically-redundant 

sampling of the 8283 m2 green region.   

 

 The reason for the use of different-dimension regions (2D and 3D) in the analyses 

was to allow consistent measurements for comparison among plots.  For measurement of 

sampling contribution of scan positions or the effect of range on sampling coverage, the 

tally of sampled voxels does not yield a consistent metric because the number of voxels 

available to be sampled varies greatly among plots, depending on the amount of 
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vegetation each contains.  However, the number of sampled pixels is a consistent metric 

as each plot has the same number of pixels of any given size.  In the analysis of sampling 

method repeatability, the varying number of occupied voxels between plots is normalized 

by reporting the fraction of voxels which are reproduced, a metric which will always 

have a value between 0 and 1. 

 All TLS dataset processing was performed using LasTools software 

(www.rapidlasso.com). 

3.3. Results and Discussion 

Effect of Range on Extent of Unsampled Area 

 Graphs showing the fractional extent of sampled area versus range from scanner 

are shown in Figure 3.4. Except at very close ranges, the average fraction of sampled 

pixels was lower in shrub plots than grass plots at all pixel sizes.  This corresponds to 

expectations that the large protrusions presented by shrubs yield more extensive shadows 

than those produced by grass.  At very long ranges, the difference between the grass and 

shrub plots will again approach 0 as fractional sampling coverage approaches 0, although 

at the ranges considered this is only demonstrated using 5 cm pixels.   

A greater fraction of area is always identified as sampled as the pixel size 

increases.  This is highly unsurprising as all areas indicating sampling presence using 

small presence-absence pixels will also indicate presence using larger pixels.  Conversely, 

each large pixel indicating presence is likely to bound smaller pixels which are mixed 

among presence and absence.  

As the pixel size used to quantify fractional sampling coverage increases, the 

difference in mean sampling coverage between shrub and grass plots at a given range also 
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increases.  This is likely due to different primary mechanisms of shadowing—large 

shadows produced by shrubs are detected using large pixel sizes, while the shadows 

produced by grasses are often too narrow or discontinuous to be identified using large 

presence-absence pixel sizes, even if these shadows are collectively spatially-extensive.    

Trends of fractional sampling coverage tend to exhibit a shelf of high values (90-

100%) at close ranges, with the range at which thorough sampling is determined to be 

achieved extending further when using larger pixel sizes and in grass plots.  This shelf 

effect is readily accounted for by the more-acute scan angles presented at close ranges, 

which prevents the occurence of long lateral shadows by enabling the scanner to “see 

over” protruding vegetation.  In grass plots, mean sampling coverage remained ≥ 90% up 

to ranges of 18 m using 5 cm pixels, 36 m using 20 cm pixels, and 66 m using 50 cm 

pixels.  This sampling coverage among shrub plots was attained at ranges of 12 m using 5 

cm pixels, 18 m using 20 cm pixels, and 30 m using 50 cm pixels.  This indicates that the 

utility of a single scan position is substantially uncompromised by shadowing until some 

considerable range, depending on the scanner’s height, vegetation size and density, 

topographic roughness, and the scale (pixel size) at which sampling coverage is 

quantified.  A methodology using several scan positions in similar field areas could be 

optimized in efficiency by spacing positions at least twice the distance of the range of 

good performance at the scale of interest, preventing overly-redundant collection.  To 

better identify the optimal spacing between several scan positions, further research along 

this line could consider the effect of range from two or more complementary positions on 

scanning coverage. 

  Beyond this shelf of high values, a negative logarithmic relationship exists 
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between range and fractional sampling coverage. A likely mechanism of this is that a 

protrusion of a given size will produce more occlusion as the vector from sensor to 

protrusion becomes more lateral.  The logarithmic trend (a steep drop-off in values which 

tapers as sampling coverage approaches zero) being more pronounced at smaller pixel 

sizes suggests that it is driven by the small shadows caused by low-lying vegetation, 

which are individually too small to be captured by large pixels.   

A notable finding of this study is that fine and low-lying vegetation is an 

important mechanism of shadowing at long ranges.  Although scanning was performed 

with a small enough angle between pulses to sample every pixel at a range of 99 m, at 

this range only 8% of 5 cm pixels, 37% of 20 cm pixels, and 68% of 50 cm pixels on 

average were sampled in grass plots.  This shows that the extent of long-range sampling 

coverage in rangelands is controlled not by the density of sampling, but by the height and 

density of vegetation, topographic complexity, and the height of the scanner. 

Sampling Contribution of Additional Scan Positions 

 Graphs showing the extent of sampled area versus the number of scan positions 

used are shown in Figure 3.5. As discussed above, the large protrusions formed by shrubs 

are expected to reduce measured sampling coverage by creating large shadows, and large 

pixels would be expected to increase measured sampling coverage by failing to identify 

small shadows.  In line with expectations, we found that the mean area sampled in grass 

plots was higher than in shrub plots considering all configurations and pixel sizes, and 

that there was a positive effect of increasing pixel size on measured sampling coverage 

yielded by each scan position configuration.   
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Range from scanner (m) 

Range from scanner (m) 

Range from scanner (m) 

Figure 3.4.  The effect of range on fractional sampled area in 3 m range intervals using 5, 20, and 50 cm 

pixel sizes to measure sampled area.  Pink lines show grass plots (n = 13) and green lines show shrub plots 

(n = 13), while bold and dashed lines show class means and ± 1 standard deviation, respectively.   
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Table 3.2.  The mean additional sampling coverage contributed by each configuration of additional scans, 

as percentage of sampled area in 1 ha plots (n = 13 each of grass and shrub plots). 

Plot type Pixel Size 1 scan coverage 3 scan coverage 5 scan coverage 

Shrub 5 cm 35% 55% 69% 

20 cm 64% 82% 91% 

50 cm 83% 95% 99% 

Grass 5 cm 45% 68% 82% 

20 cm 82% 95% 99% 

50 cm 96% 100% 100% 

 

Because of the higher coverage yielded by the initial scan in grass plots and 

analyses using large pixel sizes, there was less room for improvement by configurations 

with additional scans than in shrub plots and analyses using small pixel sizes.  Likewise, 

the contribution of data by additional scans (Table 3.2) consistently decreases as the 

number of scans already performed increases.  Additional scans increased the area 

sampled in all cases except in grass plots using a 50 cm pixel size, where 3 scans 

achieved complete sampling coverage. Sampling coverage averaging 99% or 100% was 

also achieved in grass with 5 scans using a 20 cm pixel size, and in shrub plots with 5 

scans using a 50 cm pixel size.  

The 4 plots where additional sampling was performed allow further inference 

about cases where complete sampling coverage could not be accomplished using the 5 

scan configuration.  For all 4 plots (2 grass and 2 shrub), nearly-complete sampling (> 

98%) was accomplished using 9 scans and a 20 cm pixel size.  Using 9 scans and a 5 cm 

pixel size, 99% sampling coverage was accomplished for both grass plots, while shrub 

plots received sampling coverage of 80% and 93%.  These results should be regarded as 

just rough estimations of typical sampling coverage yielded using 9 scan positions per 

plot, as they consider just 2 samples of each class. Another important note is that these 



48 

 

statistics describe sampling coverage over a 8283 m2 region rather than whole hectares, 

which not only reduces the area to be sampled but also excludes plot corners, which are 

the areas furthest from scanning positions. 

 These results provide direct guidance to maximize efficiency of TLS in grasslands 

or shrublands.  For example, we show that a study interested in grassland features in a 

similar environment at the 20 cm scale needs no more than 3 scan positions per hectare to 

provide complete sampling coverage, while a study focused on 5 cm scale features in 

shrublands needs greater than 9 scan positions per hectare to achieve complete sampling 

coverage.  A limitation of these results is that they only apply to the specific scan 

configurations tested, and future work would be needed to discover trade-offs between 

various layouts of a given number of scans.  

Reproducibility of 5-Scan Position Methodology 

Figure 3.6 is a graph of the fraction of volume sampled using a 5 scan position 

layout that was reproduced when the layout was repeated with a different alignment, 

versus the voxel size used for volume measurement.  Voxels sampled in grass plots were 

reproduced more reliably than voxels sampled in shrub plots.  The rates of reproducibility 

more closely resembled one another between the two grass plots than the two shrub plots, 

reflecting the greater diversity in arrangement and composition within the shrub class of 

plots.  A qualitative examination of the shrub plot datasets showed that voxels which 

were not reproduced tend to represent targets below the shrub canopy, mainly ground 

surface or low-lying vegetation.  The average percentage of voxels which occur in one set 

of scans and are reproduced in a second is 51% in shrub plots and 69% in  
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Number of scan positions 

Number of scan positions Number of scan positions 

Number of scan positions Number of scan positions 

Number of scan positions 

Figure 3.5.  The contribution of additional scan positions to total sampled area using 5, 20, and 50 cm pixel 

sizes to measure sampled area.  Pink lines show grass plots (n=13) and green lines show shrub plots (n = 

13), while bold and dashed lines show class means and ± 1 standard deviation, respectively.  At left are 

values calculated for all plots, and at right are values for the 2 grass plots and 2 shrub plots where 

additional sampling was performed.   

5 scan positions 9 scan positions 
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grass plots using a 5 cm voxel size, 71% in shrub plots and 87% in grass plots using a 10 

cm voxel size, 84% in shrub plots and 94% in grass plots using a 20 cm voxel size, and 

93% in shrub plots and 97% in grass plots using a 50 cm voxel size. 

Intuitively, large voxels (coarse) were reproduced more reliably than small voxels 

(fine).  In all cases, the positive relationship of voxel reproduction rate with voxel size 

tapers as voxel size increases, indicating that finer-scale discrepancies among scan sets 

are more prevalent than coarser-scale ones.  A straightforward explanation of this is that 

rate of reproduction is inversely related with the amount of shadowing occurring in the 

point clouds of each plot, as different sets of scans may have different regions which are 

shadowed or sampled.  In addition to inconsistently shadowed regions, fine-scale 

discrepancies could arise from windy conditions during scanning or small errors in 

coregistration of scans.   

 Our results indicate that about half of the data collected by a 5 scan 

methodology/hectare in shrub plots and two-thirds of sampled volume in grass plots is 

readily reproducible at 5 cm scales using the same sampling protocol, while sampling of 

remaining fraction is restricted to specific alignments of the scan position layout.  

Meanwhile, nearly all of the sampled volume in both plot types was reproduced at the 50 

cm scale.  While these results do not directly indicate the thoroughness of sampling or 

any other description of dataset quality, they may be used to infer the extent to which a 

quantitative analysis of TLS datasets collected using a specific protocol in rangeland 

ecosystems is subject to stochastic variability due to idiosyncrasies of how the scanner’s 

field-of-view changes depending on how its specific location relates to the layout of 

topography and vegetation in the plot.  We demonstrate clearly that studies applying TLS 
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to detect fine scale vegetation change across large plots should take pains to use identical 

scanning positions at each sampling time, as using different sets of positions may indicate 

a substantial amount of change falsely.  In change detection studies where positions are 

not reused exactly, our results may help to quantify error the error arising from 

inconsistency of scanning positions in the context of the landscape. For example, our 

results indicate that 2 collections using our protocol of 5 scans per hectare where scan 

positions were not perfectly consistent could expect about half of 5 cm voxels to be 

unique to each collection, even if the landscape had not actually changed in the time 

between collections. 

Figure 3.6.  The ratio of voxels that were replicated in both sets of scans to the average number of voxels 

recorded in 1 set of scans, considering 5, 10, 20, and 50 cm voxel sizes.  Pink lines show 2 grass plots and 

green lines show 2 shrub plots.  

 Conclusions 

 A priori understanding of the strengths and limitations of TLS sampling methods 

is vital to maximizing efficiency of sampling in logistically-challenging field campaigns, 

and we hope that the body of information provided here will offer useful guidance to 
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future researchers planning the application of similar methods and instruments in 

rangelands.  An important qualifier to our results and recommendations is that they may 

only apply to study areas with similar landscape characteristics to those we sampled. 

Different vegetation structure, such as taller or more dense vegetation and more complex 

topography will increase shadowing problems and decrease reproducibility of limited 

TLS collection methodologies. 

 The measures employed in each of our experiments changed greatly depending on 

the composition of vegetation in the plots and the scale at which measurements were 

made.  By stratifying results by both, we hope that future researchers may identify the 

results most pertinent to their own work.  Advance knowledge of study area composition 

as well as the resolution, coverage, and sampling reproducibility that is useful in datasets, 

coupled with information detailing the quality of datasets which specific sampling 

methods may be expected to yield, may increase the efficiency and logistical ease of TLS 

collections. 
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Chapter 4:  Conclusions 

TLS was used to collect high-resolution structural data at 26 square hectare plots 

in rangelands in southwest Idaho.  The resultant datasets were used as the basis of two 

studies: (1) an effort to predict the canopy cover and biomass of different morphological 

classes of vegetation, and (2) a series of experiments designed to quantify “shadowing” 

effects in TLS point clouds collected in rangelands and the success of methods to 

mitigate them.  In combination, these studies form a foundation for the design of efficient 

and effective methods for rangeland vegetation inventory using TLS. 

In Chapter 2, we show that pixel statistics about point cloud 3D structure serve as 

effective predictors of class-wise canopy cover fraction and biomass in models 

constructed using the Random Forests ensemble learning/decision trees algorithm.  Using 

manual measurements taken at 9 systematically-placed 1 x 1 m quadrats at each plot (n = 

206 after discarding plots with exceptionally poor TLS sampling coverage) for training 

and validation data, we modeled canopy cover fraction of annual grasses, perennial 

grasses, forbs, bare earth/litter, and shrubs, and biomass of herbaceous vegetation and 

shrubs with model strength ranging between R2 = 0.28 and R2 = 0.72.  Our successful use 

of pixel statistics to infer vegetation characteristics expand on the known capabilities of 

TLS collections in rangelands, which have been previously used to predict height, crown 

area (Vierling et al. 2013), and biomass (Olsoy et al. 2014a,b) of individual sagebrush 

shrubs.     

The successful use of pixel statistics as predictors of vegetation characteristics 

shows that vegetation inventory may be successfully performed without explicitly 

delineating and classifying individual plants.  This approach is particularly useful when 
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complementary manual sampling is performed on a per-area basis (rather than per-plant), 

and when individual plants cannot readily be delineated in laser scan point clouds (e.g. 

cheatgrass or clumped shrubs).   

Intuitively, there is a trade-off between the resilience of statistics calculated using 

large pixels to small shadowed areas and stochastic flaws in point clouds, and the level of 

detail captured by calculating structural statistics at smaller pixel sizes.  We found that the 

size of pixels used to calculate structural statistics did affect the strength of resultant 

models, and that the optimal pixel size varied among field measurements being predicted.  

Future studies should likewise test various pixel sizes for calculation of structural 

statistics to determine which yields the most powerful predictors of each variable.   

There are several disadvantages to modeling vegetation characteristics based 

purely on pixel statistics of structure. These disadvantages include the weakening of 

allometric inference when a single biomass measurement describes either several plants 

combined or only portions of plants, as well as the loss of information about the spatial 

distribution of structure when pixel values from throughout a quadrat are aggregated into 

a single statistic.  Beyond these inherent methodological challenges, we observed a 

number of common sampling errors in data collection, including small mistakes in co-

location of manually-sampled data to TLS point clouds, canopy cover measurements 

which described extents larger than paired regions in TLS point clouds, inexact biomass 

sampling of large shrubs, and shadowed regions in TLS point clouds. 

That the Random Forests algorithm yielded good quality models in spite of these 

difficulties is a testament to the power of machine learning methods to derive useful 

information from complex datasets.  Starting with 145 predictors (per-quadrat mean, 
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maximum, minimum, standard deviation, and a range of 29 structural statistics), Random 

Forests yielded strong models of each manually-measured characteristic using 4 or fewer 

TLS-derived predictors.     

There are several immediate applications of the ability to accurately inventory 

vegetation classes over large rangeland plots.  Urgent problems in the western USA 

stemming from altered regimes of wildfire and succession require efficient means of 

vegetation inventory to document baselines of ecosystem composition and evaluate the 

success of landscape treatment efforts using time series.  The ability to inventory 

vegetation across large rangeland plots may also lend itself to numerous research and 

management purposes in drylands, which face a host of degradation problems worldwide.  

Ecological models that require input data in the form of simulated vegetation landscapes 

could use TLS to create fine-scale models which precisely replicate real-world 

conditions.  Interpretation of aerial or satellite-based remote sensing, which has thus far 

been challenged in rangeland ecosystems, may be improved using broad-scale training 

data collected using TLS.   

In Chapter 3, we carried out a series of experiments to better understand the 

limitations of TLS sampling in rangeland ecosystems, contributing to the small body of 

work that explicitly addresses methods to optimize quality and efficiency of TLS 

collections.  We tested the effect of range-from-scanner on the extent of shadowed 

regions in datasets, the effectiveness of multiple scanning positions at reducing total 

shadowed area in 1 ha plots, and the reproducibility of point clouds yielded by a 

methodology employing 5 scans per hectare.  We compared the differences in datasets 

yielded from shrub-dominated and grass-dominated plots, and the effect of different 
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scales of measurement on statistics of sampling coverage and reproducibility. 

Unsurprisingly, each of our experiments showed that grass-dominated plots are less prone 

to shadowing problems than shrub-dominated plots, and that coarser scales of measuring 

sampling presence-absence indicated superior sampling coverage. 

In testing the effect of range from scanning position on the fractional extent of 

unsampled regions in datasets, we found that the range of highly-effective sampling (> 

90%) coverage extended some considerable distance out from the scan position, with this 

distance depending on the plot cover type and scale at which measurements were made.  

We found that very fine, low-lying vegetation was a significant mechanism of shadowing 

beyond short ranges, indicating that scanner height and plot vegetation composition (as 

opposed to scanning density) are the limiting factors of collection quality.  

Examining the contribution to sampling coverage over 1 ha plots that was 

provided by successively-larger arrangements of scanning positions, we found that each 

of at least 5 positions contributed additional coverage when measurements of sampling 

coverage were made at fine (5 cm) scales.  We showed that as many as 9 scan positions 

per hectare may be required to yield complete fine-scale sampling coverage in grassy 

plots, and that greater than 9 positions per hectare would be required to yield complete 

fine-scale sampling coverage in shrubby plots.  However, when measurements of 

sampling coverage were coarsened to the 50 cm scale, 5 scan positions per hectare were 

sufficient to yield complete coverage in shrubby plots and 3 positions were sufficient in 

grassy plots.   

Examining the rate of reproducibility among datasets yielded using a 5 scan 

position per hectare protocol, we found that implementations of this layout with the 
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maximum difference in alignment yielded datasets which reproduced one another with 

rates ranging between 50% and 75% at fine scales (5 cm) and better than 90% at coarse 

scales (50 cm).  These values are likely to be slightly optimistic estimations of actual 

reproducibility of datasets collected across hectare plots, as the actual area of 

consideration was 8283 m2, and excluded plot corners; but pessimistic in that they are 

drawn from the most extreme case of positional separation between two different 

deployments of the scan position layout around a given centerpoint.  

Although we do make general recommendations based on our results in Chapter 3 

(e.g. the efficiency of collections may be optimized by spacing apart scan positions at 

least twice the distance at which very good sampling coverage is achieved), we intend 

researchers to draw their own conclusions from the information we provide.  Pairing our 

results with advance awareness of field conditions and desired dataset quality, researchers 

may make educated decisions about the TLS collection effort worth investing at each site.    

In combination, these studies present information about both how to optimize 

efficiency and sampling quality of TLS collections in rangelands, and how to effectively 

apply TLS data to inventory biomass and canopy cover of several rangeland vegetation 

types.  Future work could immediately build on these studies by using TLS data to 

inventory grassland and shrubland vegetation based on collections performed using the 

guidance we provide to optimize TLS methods in rangelands.  Terrestrial laser scanning-

based predictions of vegetation characteristics could be strengthened further by collecting 

datasets which are functionally-free of lateral occlusion.  Although we have not yet 

demonstrated methods to achieve this in shrub-dominated plots, it could be accomplished 

using scan positions which are more elevated or numerous than in the configuration we 
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used.  As it stands, our work is a proof-of-concept of TLS as an efficient and accurate tool 

of rangeland vegetation inventory, with immediate applicability to complement and 

extend management-oriented vegetation sampling already being performed in rangelands 

of the western USA. 
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Appendices 

Table A.1. Optimal Random Forest models produced by each combination of input parameters and quality 

score.  N describes the number of predictor variables used.  These models were created using the R library 

caret (Kuhn 2008), which enables automated selection of optimal models. Although models tend to be 

slightly weaker than those yielded by Salford Predictive Modeler, this table illustrates the change in 

predictive power with number of variables (Chapter 2).    

 

  5 cm window 10 cm window 20 cm window 

Feature Score R2 RMSE N R2 RMSE N R2 RMSE N 

Shrub cover  1 0.59 8.8 % 4 0.54 9.3 % 4 0.56 9.1 % 5 

2 0.59  8.5 % 4 0.52 9.3 % 2 0.54 9.1 % 4 

3 0.64 5.9 % 5 0.67 5.7 % 5 0.65 5.8 % 1 

Bare earth/litter  

cover 

1 0.41 21.2 % 3 0.42 21.2 % 2 0.40 21.0 % 4 

2 0.41 21.3 % 2 0.41 21.4 % 1 0.40 21.0 % 4 

3 0.05 25.1 % 5 0.14 23.5 % 5 0.04 25.7 % 3 

Annual grass 

cover 

 

1 0.61 24.0 % 3 0.60 24.3 % 2 0.58 25.2 % 1 

2 0.62 23.3 % 4 0.58 25.3 % 1 0.61 23.7 % 4 

3 0.23 27.7 % 4 0.28 27.1 % 2 0.28 27.1 % 3 

Perennial grass 

cover 

 

1 0.23 13.5 % 5 0.26 13.2 % 3 0.23 13.6 % 2 

2 0.16 14.2 % 5 0.23 13.6 % 4 0.14 14.6 % 2 

3 0.01 18.2 % 5 0.10 16.9 % 2 0.03 19.1 % 1 

Forb cover 

 

1 0.44 6.7 % 2 0.45 6.6 % 3 0.43 6.7 % 4 

2 0.50 6.3 % 4 0.46 6.6 % 3 0.45 6.6 % 4 

3 0.43 6.4 % 2 0.40 6.6 % 2 0.39 6.6 % 4 

Herbaceous 

biomass 

 

1 0.42 122.5 g 2 0.41 121.8 g 3 0.47  115.0 g 3 

2 0.14 127.2 g 2 0.17 122.3 g 2 0.12 128.3 g 4 

3 0.08 61.7 g 2 0.00 68.9 g 2 0.07 61.9 g 3 

Shrub biomass 1 0.37 257.9 g 4 0.46 237.1 g 4 0.45 237.6 g 3 

 2 0.33 222.4 g 4 0.28 236.8 g 3 0.29 228.5 g 4 

 3 0.57 88.7 g 2 0.69 76.3 g 2 0.27 115.9 g 5 
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Table A.2. The sampling quality score assigned to each quadrat in the study.  An “X” indicates that the 

quadrat was discarded.  Quadrats were numbered in reading order from the Northwest (Chapter 2).   

 Quadrat 

Plot 1 2 3 4 5 6 7 8 9 

106 2 2 2 2 2 2 2 2 3 

107 2 2 3 X 2 2 2 2 2 

110 2 2 2 2 2 2 2 2 2 

114 2 X 3 2 1 3 3 3 2 

115 3 2 3 3 3 3 2 3 X 

117 2 3 2 1 2 X X 2 X 

200 2 2 2 2 2 2 3 1 2 

203 3 3 3 3 2 3 2 2 X 

204 3 3 3 3 3 3 2 3 2 

209 3 3 3 X 1 3 1 2 1 

211 3 X 3 X 3 X 3 3 3 

214 2 X 3 X 2 3 X X X 

216 X X X 1 3 2 2 X 2 

332 X X 3 3 2 2 3 2 2 

338 2 2 2 3 3 2 3 2 2 

341 3 3 2 3 3 3 3 2 3 

350 2 X 2 3 2 2 2 3 2 

352 2 2 X X 3 3 2 3 3 

353 3 3 3 3 3 X 2 3 3 

354 3 X 3 2 3 2 3 3 3 

411 2 2 2 2 3 X 2 2 2 

415 2 3 3 3 3 3 2 2 3 

416 3 3 3 3 3 3 3 3 3 

417 3 3 3 3 3 3 3 2 3 

421 1 2 3 2 2 3 1 2 2 

422 2 2 3 2 2 3 2 2 2 
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Table A.3. The dates between 5/15/2013 and 6/14/2013 at which TLS performed and the number of days 

until manual sampling was carried out (Chapter 2). 

Plot Date of TLS sampling Days elapsed until manual sampling 

106 5/16/2013 1 

107 5/16/2013 1 

110 5/15/2013 19 

114 6/10/2013 136 

115 6/6/2013 140 

117 6/6/2013 14 

200 6/11/2013 7 

203 6/12/2013 6 

204 6/12/2013 6 

209 5/17/2013 18 

211 5/15/2013 2 

214 5/17/2013 32 

216 5/17/2013 18 

332 6/4/2013 142 

338 6/13/2013 6 

341 6/5/2013 141 

350 6/14/2013 5 

352 6/5/2013 141 

353 6/14/2013 5 

354 6/5/2013 141 

411 5/23/2013 14 

415 5/23/2013 13 

416 5/24/2013 13 

417 5/22/2013 20 

421 6/10/2013 1 

422 6/10/2013 1 
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Table A.4.  Plot-wise statistics of the quadrat manual measurements modeled in the study (Chapter 2). 

Plot Descriptor 

Shrub 

Cover 

(%) 

Ground 

Cover 

(%) 

Annual 

grass 

cover (%) 

Perennial 

grass 

cover (%) 

Forb 

cover 

(%) 

Herbaceous 

biomass (g) 

Shrub 

biomass 

(g) 

106 Mean 0.0 10.8 84.3 0.4 4.3 274.1 0.0 

 Standard deviation 0.0 21.8 30.2 1.0 8.7 99.1 0.0 

107 Mean 0.0 13.0 80.4 2.9 3.6 197.2 0.0 

 Standard deviation 0.0 21.9 22.5 2.5 4.1 83.4 0.0 

110 Mean 0.8 10.7 84.5 3.8 0.2 117.9 1.9 

 Standard deviation 2.3 9.7 9.8 4.2 0.4 24.3 5.5 

114 Mean 30.1 56.2 1.4 12.0 0.3 258.1 245.1 

 Standard deviation 22.5 16.6 1.6 12.7 0.4 301.6 408.5 

115 Mean 0.0 33.9 29.7 15.9 20.4 159.2 0.0 

 Standard deviation 0.0 20.4 26.2 19.2 7.4 86.8 0.0 

117 Mean 16.6 58.5 11.8 12.4 0.7 272.6 300.1 

 Standard deviation 10.1 18.8 11.0 17.4 1.5 214.5 395.0 

200 Mean 3.8 28.5 59.8 7.9 0.0 99.0 57.5 

 Standard deviation 7.1 27.6 34.3 9.6 0.0 64.4 125.6 

203 Mean 0.0 38.7 48.9 12.3 0.3 93.1 0.0 

 Standard deviation 0.0 26.1 26.9 9.4 0.7 82.6 0.0 

204 Mean 0.0 40.4 46.3 12.2 1.2 130.6 8.4 

 Standard deviation 0.0 26.5 27.7 14.1 1.5 42.9 23.9 

209 Mean 0.0 26.2 62.5 11.3 0.0 123.6 0.0 

 Standard deviation 0.0 20.4 25.8 7.4 0.0 57.2 0.0 

211 Mean 0.0 27.4 55.5 15.4 1.7 68.5 0.0 

 Standard deviation 0.0 22.8 35.6 12.2 3.7 24.6 0.0 

214 Mean 0.0 7.4 83.3 9.3 0.0 210.4 5.3 

 Standard deviation 0.0 9.4 11.9 7.0 0.0 87.5 9.1 

216 Mean 0.0 40.9 34.6 24.5 0.2 170.8 1.3 

 Standard deviation 0.0 18.4 16.1 7.1 0.4 85.9 2.6 

332 Mean 23.8 73.2 1.0 1.7 0.3 47.6 226.2 

 Standard deviation 7.6 11.6 2.5 2.1 0.5 35.2 146.1 

338 Mean 30.3 47.0 0.1 19.9 2.9 111.5 847.0 

 Standard deviation 13.9 9.5 0.3 10.9 2.3 51.2 787.5 

341 Mean 0.0 57.2 0.0 24.4 18.5 72.0 0.0 

 Standard deviation 0.0 17.1 0.0 14.4 6.4 33.3 0.0 

350 Mean 15.1 58.6 0.0 2.1 24.2 137.5 131.4 

 Standard deviation 13.4 18.0 0.0 4.9 20.3 110.0 228.1 

352 Mean 14.9 69.5 1.0 11.2 3.5 30.2 0.0 

 Standard deviation 23.3 19.2 1.7 11.0 3.8 27.0 0.0 

353 Mean 1.1 71.4 0.0 21.8 5.6 48.6 8.8 

 Standard deviation 0.9 15.1 0.0 18.2 6.0 13.6 15.1 

354 Mean 19.7 62.8 0.0 17.0 0.5 53.3 104.0 
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 Standard deviation 8.7 15.4 0.0 16.5 1.0 47.1 170.5 

411 Mean 1.4 6.4 91.3 0.8 0.0 196.6 11.3 

 Standard deviation 3.8 9.5 12.7 1.1 0.0 78.3 29.9 

415 Mean 5.0 14.0 76.7 4.3 0.0 192.7 104.7 

 Standard deviation 13.4 10.4 19.4 3.0 0.0 108.9 296.2 

416 Mean 0.0 46.0 26.9 21.6 5.5 88.4 0.0 

 Standard deviation 0.0 11.8 20.8 11.1 11.0 39.3 0.0 

417 Mean 0.0 52.4 1.1 45.6 0.9 79.5 0.0 

 Standard deviation 0.0 17.8 3.2 19.5 1.6 41.3 0.0 

421 Mean 7.8 55.3 23.3 12.5 2.8 489.4 404.4 

 Standard deviation 11.0 16.0 19.2 12.7 5.1 382.4 656.3 

422 Mean 23.9 49.9 3.6 22.2 0.3 87.6 183.8 

 Standard deviation 10.3 11.4 3.7 8.5 0.7 26.0 144.3 
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Figure A.1. The distribution of residuals between modeled and measured values from each plot (n=26).  

Red and blue coloring is to assist differentiating alternating plots.  Residuals from each plot tending to be 

randomly distributed around 0 suggests that quadrat measurements do not differ due to the plot they fall in, 

which would cause the model to consistently either over- or under-predict values from each plot (Chapter 

2). 
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