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Abstract 

 High spatial and temporal resolution satellite imagery provides a reliable resource for crop 

monitoring throughout the growing season. Spectral indices including NDVI, SAVI and NDWI 

deliver crucial information about crop health to aid growers with decision making for precision 

agriculture practices. These vegetation and water indices show crops’ response to changing 

weather conditions and indicate critical times where extra irrigation or nutrients are needed. NDVI 

and slope are critical indicators for yield prediction. Using the Idaho potato yield data and taking 

into consideration different potato varieties, we are able to predict yield values for crops in 

Lebanon.   
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Chapter 1 Introduction 

1.1 Agricultural Production 

Agriculture is an important sector in the global economy and is a crucial component for 

fighting hunger and food insecurity. According to the United Nations Food and Agriculture 

Organization (2017), the expectation is that the world population will reach 10 billion by 2050 and 

there is a need to produce around 50% more food than in 2012. Lebanon relies heavily on its 

agricultural sector as it contributes 637% to Gross Domestic Product (GDP) and provides work to 

15% of the Lebanese population (FITA 2008). The Bekaa Valley, located in the center of Lebanon, 

is one of the largest agricultural regions in the country. Potato crops account for 56% of vegetable 

production in the country, mainly in the Bekaa Valley and North Lebanon states (Hatoum 2005a). 

Hence, it is important to ensure the health of potato crops and to improve production in order to 

revive and improve the local and regional market to where it was prior to the Lebanese civil war 

(1975 – 1990).  

Lebanese growers are having a hard time selling their produce which is having an impact 

on the Lebanese economy. With the pressures of potato viruses, pests, diseases and other threats 

attacking crops along with the increased cost of pesticides, herbicides, fertilizers and workers 

needed to inspect plants from the fields, Lebanese farmers have been suffering economically and 

so has potato production (An-Nahar Newspaper 2015). Since potatoes are an important irrigated 

crop that can be vulnerable to water availability, pests, disease and other crop threats, precision 

agriculture has the potential to help minimize such issues. Precision agriculture uses information 

technology to better manage crop production by taking into consideration the variations within the 

field to increase profitability and sustainability (Q. Zhang 2016). Precision agriculture can improve 

crop yield by empowering farmers with timely scientific knowledge on crop condition. By utilizing 
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remote sensing data from satellite and unmanned aircraft systems (UAS), farmers can leverage 

cost-effective technologies to mitigate crop threats with targeted approaches for grower decision-

making such as variable rate fertilizer application, timely irrigation, early disease detection, and 

pest control. Introducing the concept of precision agriculture plays a major role in empowering 

local farmers and stakeholders by educating them about new technologies that have the potential 

to improve their crop productivity and enhance their economic sustainability.  

Though there are many factors affecting the agricultural and economy sectors in Lebanon, 

one of the major ongoing issues is the ongoing Syrian crisis and its corresponding refugee influx’s 

impact on Lebanon. The war that started in 2011 has resulted in over 1.5 million Syrians taking 

Lebanon as their shelter away from the war. Despite the refugees living all over Lebanon, the main 

concentration areas were the Bekaa Valley and Northern Lebanon as they are the common 

boundaries between Lebanon and Syria. The majority of the Syrian refugees set up tents near 

bodies of water within the valley and mainly along rivers to have access to water. However, most 

of those refugee camps lack access to sanitary living conditions and the residents use the water for 

all their daily needs including cooking, showering and toilet water. As a result, there has been an 

increase in pollution levels within the rivers which irrigate neighboring agricultural lands. The 

random and unorganized distribution of refugee tents lead to a decrease of natural resources 

including water bodies and agricultural lands (FAO 2014). 

In Lebanon, the traditional method of crop inspection is for growers to individually inspect 

plants in the field (An-Nahar Newspaper 2015). This is time-consuming and not very efficient. In 

addition, the cost of applying fertilizers to crops is higher since farmers apply treatments uniformly 

instead of using a variable rate treatment. This places a greater financial burden on the farmers due 

to the increased amounts of fertilizers needed to cover the entire field. Precision agriculture offers 
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a solution for such problems; however, in a country such as Lebanon, precision agriculture is still 

in its early stages of adoption. Lebanon recently teamed up with the Food and Agriculture 

Organization of the United Nations (2017) to launch the Country Programming Framework from 

2016 to 2019 in order to develop more sustainable practices to improve the agricultural sector. 

Currently, Syria is a politically unstable region bordering Lebanon, and it is challenging to utilize 

UAS for crop inspection in certain areas since they could mistakenly be perceived as a threat. This 

poses a major challenge until the region achieves increased stability. In the meantime, satellite 

imagery has the potential to act as a substitute for UAS precision agriculture data collection and 

cover larger areas without the risk of having people interpret it as a threat. 

 

1.2 Research Questions 

This comparative thesis study assesses potato crop stressors that affect yield in Lebanon’s 

Bekaa Valley by drawing from a model generated over the 2017 growing season using satellite 

imagery and potato yield data collected in Idaho, USA. Since Idaho and the Bekaa Valley share 

similar topographic, geographic and environmental features (Figure 1, Figure 2 & Figure 3) 

including related crop threats, we hypothesized that a model trained with yield data and satellite 

imagery from Idaho can characterize a yield prediction model for the Bekaa Valley. 
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Figure 1 Bekaa Valley, Lebanon and SouthEast Idaho locations on the world map. 

Basemap source: Esri, DigitalGlobe, GeoEye, Earthsatr Geographics, CNES/Airbus DS, 

USDA, USGS, AeroGRID, IGN, and the GIS User Community 

  



5 
 

 

 
 

Figure 2 Bekaa Valley boundaries and location within Lebanon. 

Boundaries layers source: 

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/LBN_

Boundaries_2016/FeatureServer 
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Figure 3 Snake River Plain and study area location within Idaho. 

Boundary layer source: 

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_

Boundaries_2016/FeatureServer 
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Both study areas have cold wet winters and hot dry summers and are within river plains and 

part of the North Temperate Zone. The Idaho study area is located at a latitude of 43.9º and altitude 

of 1502 m above mean sea level with a wet season from October through June with a high average 

temperature during the 2017 season of 24ºC. The Lebanon study area is at 10º lower than the Idaho 

study area, located at 33.9º latitude and elevation of 872 m above sea level and a high average 

temperature of 34ºC during the 2017 growing season.  

This research also evaluated general irrigation efficiency and crop health over the growing 

season. Multispectral satellite imagery from PlanetScope sensor over Idaho and Lebanon, 

including derived vegetation and water indices, provided the predictor variables for the regression 

model to forecast yield.  

Specifically, this thesis research addresses the following questions: 

● What are the best indices for yield prediction? 

● How do vegetation indices vary over the growing season? 

● What is the relationship between vegetation indices and water indices? 

● What is the relationship between vegetation and water indices and potato crop 

yield? 

● What is the potential of multispectral satellite imagery for agricultural applications? 

● Can an Idaho yield model predict yield in Lebanon?  
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1.3 Research Significance 

With the use of satellite imagery, there is the potential for a low-cost decision support system 

to increase crop yield. As a result, this can help strengthen the Lebanese economy by reviving the 

domestic market and potentially increasing potato exports. This study builds upon existing work 

and aims to expand the use of satellite imagery for studying crop threats through analysis of 

spectral response throughout the growing season. In addition, the use of newly available Sentinel-

2 along with PlanetScope satellite imagery for irrigation management and general crop health will 

act as a consistent and reliable resource to evaluate crops over the growing season.   

This research will empower farmers and stakeholders with tools that are cost and time effective 

in mitigating crop threats. Moreover, in a world suffering from climate change impacts of rising 

temperatures and irrigation shortfalls, it is very important to improve water usage and promote 

water management as part of a broader strategy of encouraging farmers to adopt more sustainable 

farming practices. Upon successful completion of this work, I will present the results of this work 

to the Lebanese Ministry of Agriculture to demonstrate the efficiency of precision agriculture and 

its potential application on Lebanese crops upon successful completion.  
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Chapter 2 Literature Review 

2.1 Potato Production in Lebanon 

With an area of 10,452 km2, Lebanon has approximately 2,730 km2 of its land used for 

agriculture (Figure 4 & Figure 5). The agricultural sector is the third most important sector in the 

country contributing between 6 to 7% of the GDP (El Gazzar 2015).  

 
 

Figure 4 Distribution of agricultural lands in Lebanon 

(DAR-IAURIF 2005) 
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Figure 5 Locations of major potato production in the Bekaa Valley 

and Akkar north Lebanon (Choueiri et al. 2017) 

 

Lebanon has traditionally been a major potato exporter to neighboring countries and the 

region where 60% of its production was exported to Arab countries, the United Kingdom and 

Brazil (Ktheien 2008). During the years of the country’s civil war from 1975 to 1990, potato 

production was severely impacted similar to other sectors where production and exports dropped 

drastically by about 50% (Gale 2007). As shown in (Figure 6), for instance, potato production 
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during the beginning of the civil war in 1975 reached a value as low as 20 kt (kilotons) from 120 

kt in the early 1970’s but started to increase with relatively steady rates after that. Though 

previously all potato seeds were imported, Lebanon has recently set up a seed production system 

with certification (Quere 2009). Although the highest potato production for Lebanon on record is 

in 2007 with 514 kt, it has been decreasing to as low as 275kt in 2011 and the last recorded value 

is from 2014 with 451.8 kt (Actualitix 2016). When it comes to potato varieties in the country, 

Alpha and Arran Banner are the main two while others such as Spunta, Jaerla and Cloustar are 

making their way into the Lebanese market (Ktheien 2008).  

 

 
 

Figure 6 Potato Production in Lebanon between 1961 and 2014. (Knoema 2015) 
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Although there is very limited data on potato viruses and threats in Lebanon, there are 

several studies to provide a statistical overview for a baseline to build future work (Knoema 2015). 

Since water is a crucial element in potato crop growing, efficient irrigation methods for potato 

crops are important. My research shows that the main irrigation systems in Lebanon are, in addition 

to rainfall, basin and furrow irrigation, followed by sprinklers and micro irrigation techniques 

(Karaa and Karam 2000). Among different irrigation methods, Darwish et al. (2004) came to a 

conclusion that drip systems were the most effective for crop growth results and should be 

implemented more widely. For potato viruses in Lebanon, Abou-Jawdeh et al. (2001) sampled 

growth seasons from major agricultural regions in the country and various potato viruses were 

detected; potato virus Y (Potyvirus) was the most dominant one among all samples. PVY 

represents a significant threat to potato crops worldwide as it is considered the most harmful to 

potato fields (Steinger, Gilliand, and Hebeisen 2014), In Turkey, for example, they are recording 

the highest percentages of infections among other potato viruses (Yardımcı, Kılıç, and Demir 

2015). Another potato threat in Lebanon is the Potato Cyst Nematodes (PCN) (Globodera) which 

is the major potato pest in the country (Ibrahim, Abi Saad, and Moussa 2004). PCN are the most 

severe potato pest where losses could reach up to 80% within a growing area (Hassan et al. 2013). 

The biggest challenge in detecting PCN is that it needs skilled and experienced workers to visually 

identify infected plants and soil in the field or by using, real-time Polymerase Chain Reaction in 

the labs, which saves time but is very costly (Hassan et al. 2013). As important as it is to study 

potato viruses and threats in Lebanon, it is equally crucial to have an overview of potato threats 

worldwide to gain a better understanding of the challenges faced worldwide. Studying a major 

potato producing region such as Idaho that employs precision agriculture techniques to manage 

crop threats can inform practices in Lebanon.   
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2.2 Satellite Imagery 

Over time, satellite imagery technology improved as reflected by an increased sensor 

resolution and expanding the usages of satellite images to cover various applications such as 

precision agriculture starting in the early 1970’s (Mulla 2013). Not only has satellite imagery 

improved in quality, but these images have also become more accessible to the public (Turner et 

al. 2015) through constantly updated datasets. Though satellite images are generally of large data 

volume (Skakun et al. 2016), various algorithms and software packages have made it easier and 

less time consuming to process and analyze large datasets. Image classification is done on a pixel 

by pixel level and thus the higher the spatial resolution ,the more detailed the result (Yang et al. 

2013).  

The Sentinel-2 is a mission by the European Space Agency (ESA). Sentinel-2A, launched 

in June 2015, and more recently, Sentinel-2B launched in March 2017, are two multispectral 

imagers covering 13 spectral bands (443 nm – 2190 nm) at resolutions of 10-20 and 60 m (Table 

1). The Sentinel-2 program is filling a void for open source freely available, medium resolution 

imaging with five day revisit times depending upon latitude, cloud cover and other factors, to 

assess plant health and vigor during growing seasons (Dash and Ogutu 2016).  
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Table 1 Sentinel-2 bands (ESA - https://earth.esa.int/web/sentinel/user-guides/sentinel-2-

msi/resolutions/radiometric) 

 

 

In addition, there is the PlanetScope satellite constellation operated by Planet that is freely 

available for university researchers. It has four spectral bands (445 nm – 860 nm) at a resolution 

of 3 m (Table 2) with a daily revisit. Both Sentinel-2 mission and PlanetScope data are useful for 

precision agriculture applications. While some previous studies on modeling yield prediction used 

Landsat (Song et al. 2016) and Sentinel-2 (Al-Gaadi et al. 2016), this work utilizes Sentinel-2A 

and PlanetScope analytical scene for the analysis due to their higher temporal and spatial 

resolution.  

  

Band  Central Wavelength (µm) Resolution (m) 

Band 1 – Coastal Aerosol 0.443 60 

Band 2 – Blue 0.490 10 

Band 3 – Green 0.560 10 

Band 4 – Red 0.665 10 

Band 5 – Vegetation Red Edge 0.704 20 

Band 6 – Vegetation Red Edge 0.740 20 

Band 7 – Vegetation Red Edge 0.783 20 

Band 8 – NIR 0.842 10 

Band 8A – Vegetation Red Edge 0.865 20 

Band 9 – Water Vapor 0.945 60 

Band 10 – SWIR , Cirrus 1.375 60 

Band 11 – SWIR  1.610 20 

Band 12 - SWIR 2.190 20 
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Table 2 PlanetScope 4 Band Imagery 

 

Band Wavelength (nm) 

Blue 455 – 515 

Green 500 – 590 

Red 590 – 670 

NIR 780 – 860 

  

  

2.3 Precision Agriculture  

Satellite imagery has a vital role in identifying crop stress to aid crop management 

strategies. However, Guo et al. (2012) argued that satellite imagery technology is tightly limited 

and unavailable during peak times of need and is yet unable to balance the high-resolution low-

cost equation. Hunt et al. (2014) agreed by explaining that satellite images only provide large pixel 

size and are faced with infrequent flying times and limited in presence of clouds. However, as new 

data emerges and becomes available to the public, satellite imagery is revolutionizing the field of 

precision agriculture application aiding decision making starting with Sentinel -2 imagery since 

2015 and Planet imagery with a daily revisit more recently. The main aim for precision agriculture 

is to take into consideration the variability in the field rather than assuming that the field is uniform. 

Hence, all field variables influencing spatial variability in growth and yield such as soil and 

topography are taken into account with precision agriculture approaches (Sivarajan 2011). Using 

satellite imagery for precision agriculture was introduced in the early 1970’s (Mulla 2013) and has 

been expanding ever since especially with the increasing availability of satellite imagery and 

options for analysis. The increase in both spatial and temporal resolution of satellite imagery 

provides a valuable resource for crop monitoring and specifically yield modeling and prediction. 

Not only has satellite imagery improved in quality, but they have also become more accessible to 

the public (Turner et al. 2015) through constantly updated datasets.  
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2.4 Vegetation Indices  

Indices best suited for analyzing crop health status are outlined in Table 3 and include: 

Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index 

(GNDVI), Soil Adjusted Vegetation Index (SAVI) and Modified Soil Adjusted Vegetation Index 

2 (MSAVI2) (Candiago et al. 2015). NDVI is a normalized ratio of near-infrared and red bands 

that range between -1 and 1 where higher values indicate more vegetated cover while lower values 

correspond to non-vegetated areas and features. Due to the ratio calculation of NDVI, it reduces 

noise and provides an effective approach for comparing changes in vegetation over periods of time 

(A. Huete et al. 2002). Similarly, GNDVI is used to further focus on the greenness of plants as it 

is more sensitive to chlorophyll content than NDVI because it is related to the Leaf Area Index 

(LAI) and biomass (Candiago et al. 2015) and has a range between 0 and 1. The SAVI index, on 

the other hand, aims at minimizing the effect of soil in vegetation unlike NDVI (A. R. Huete 1988). 

SAVI has a range between -1 and 1 where values between -1 and 0.1 are likely not vegetated. This 

index has the variable L in its equation which is related to the density of vegetation, so as the 

density increases, the value of L decreases (Candiago et al. 2015). MSAVI2, however, is a more 

accurate estimation of wide range vegetation cover (Liu et al. 2007) and is a tool to help 

compensate for images where there is a large amount of bare soil exposed in the field. Previous 

yield studies demonstrate that the most efficient indices for yield prediction are NDVI (Prasad et 

al. 2006; Song et al. 2016; Yang et al. 2013), SAVI (Al-Gaadi et al. 2016; Satir and Berberoglu 

2016; Sivarajan 2011) and Normalized Difference Water Index (NDWI) (Satir and Berberoglu 

2016; Wojtowicz, Wojtowics, and Piekarczyk 2016; You et al. 2017). Al-Gaadi et al. (2016), 

highlighted that yield was highly correlated to SAVI as it minimized the soil reflection.  
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Table 3 Vegetation Indices 

 

Chlorophyll, the green pigment in vegetation, is primarily responsible for the green color 

of the plant and controls leaf spectral response within the visible portion of the electromagnetic 

spectrum (Campbell and Wynne 2011) (Figure 7). However, chlorophyll absorbs light with 

unequal proportions as it mainly absorbs blue and red light while reflecting green light (Figure 8) 

and thus the green color visible to the human eye reflects a healthy plant. When it comes to the 

near infrared section, the structure of mesophyll tissue is in control. A very small portion of the 

infrared light gets absorbed while most of it is scattered (Figure 8). 

Vegetation Index Formula Reference 

Normalized 

Difference 

Vegetation Index 

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (Rouse et al. 1973) 

Green Normalized 

Difference 

Vegetation Index 

𝜌𝑁𝐼𝑅 −  𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅 +  𝜌𝐺𝑟𝑒𝑒𝑛
 

(Gitelson, Kaufman, 

and Merzlyak 1996) 

Soil Adjusted 

Vegetation Index 

𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑+𝐿
 * (1+L) (A. R. Huete 1988) 

Modified Soil 

Adjusted Vegetation 

Index 2 

2𝜌𝑁𝐼𝑅 + 1 − √(2𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

2
 (Qi et al. 1994) 
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Figure 7 The varying reflectance response of the leaf to the different 

wavelengths of the electromagnetic spectrum (Crum n.d.) 

 

 
 

Figure 8 Interaction of leaf structure with Visible and Infrared Radiation 

(Arnold 2010).  

Chlorophyll absorbs blue and red light while green is partially reflected and 

Near-Infrared (NIR) is scattered and reflected by the cell walls in the 

mesophyll.  
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2.5 Water Indices 

As irrigation plays a major role in the health of potato crops, it is important to analyze 

water stress and content in crops to manage water resources more efficiently and to determine what 

irrigation techniques are the most efficient. Using data collected over 3 years, Rud et al. (2014) 

showed that UAS could be used for water management by testing several irrigation methods over 

the fields of interest. In addition, according to research performed in Egypt, (Nahry, Ali, and 

Baroudy 2011), satellite imagery proved to be very effective in guiding land management practices 

to apply fertilizers and irrigation only where needed with a result of increased economic and 

environmental profitability. Further, using a Normalized Difference Water Index (NDWI) (Table 

4) calculated from Sentinel multispectral satellite imagery, water stress in plants was successfully 

determined (Gao 1996).  

Table 4 Water Indices 

2.6 Crop Monitoring 

One of the basic methods for crop yield prediction is to form an empirical relationship 

between values of vegetation indices and ground measures (Lobell 2013). By using samples 

collected from the field, the correlation between vegetation indices is determined through plot 

scatter graphs (Al-Gaadi et al. 2016) and is used to determine the accuracy of the predictions by 

Water Index Formula Reference 

Normalized 

Difference Water 

Index 

𝜌𝑁𝐼𝑅 −  𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅
 (Gao 1996) 

Normalized 

Difference Water 

Index 

𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅
 (S.K. 1996) 
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validating them on the ground. According to Satir and Berberoglu (2016), in order to identify the 

crops within the field, the analysis process starts with a supervised classification. Their work 

showed that using an object-based classification with the Supervised Maximum Likelihood 

Classifier is more efficient than running a pixel by pixel based classification to identify crops as it 

increases accuracy and decreases classification time by assuming that each classified class has a 

normal distribution and thus calculates the probability of each pixel and adds it to the 

corresponding class. Vegetation indices are then used for the prediction, each based on the 

significance of the index (Satir and Berberoglu 2016). Models are then subsequently generated to 

predict crop yield by taking into consideration these variables. Such models include linear and 

multilinear regression models where they show the relationship between variables (Satir and 

Berberoglu 2016). While both models as well as regression tree models proved to be effective 

(Song et al. 2016), another study showed that while some bands are being neglected in those 

models, they could be of great use through a Gaussian model that also accounts for the relations 

on the spatial and temporal levels using random variables (You et al. 2017). 

2.7 Yield Forecasting 

Crop yield forecasting is very crucial for farmers as it helps with management decisions 

regarding harvesting, storage, pricing and marketing. The availability of satellite imagery with 

higher spatial and temporal resolution provides detailed information about crop health over the 

duration of the growing season. Such information along with other variables such as precipitation 

and temperature data make valuable tools for crop monitoring. Yield data is the dependent variable 

and the remaining variables are explanatory for building a regression model. While there are 

numerous methods for regression models, regression analysis uses different variables (known as 

explanatory variables) to fit a relation with the dependent variable to predict it numerically (Aditya 
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Shastry 2017; Sellam and Poovammal 2016). In this study the dependent variable is yield collected 

at 0.8m x 10m resolution by a device attached to the potato harvester. Although different studies 

use a variety of regression model approaches for yield prediction, the majority of them use NDVI 

as the only index considered as the major explanatory variable due to its correlation with plant 

health (Prasad et al. 2006; Rembold et al. 2013; Song et al. 2016; Tadesse et al. 2015; L. Zhang, 

Lei, and Yan 2010). Few other works use more than one index or incorporate other indices such 

as SAVI and/or NDWI to compare which better explains and predicts yield (Aboelghar, Ali, and 

Arafat 2014; Al-Gaadi et al. 2016; Alganci et al. 2014; Dempewolf et al. 2014; Satir and 

Berberoglu 2016).  

Despite the availability of a wide range of regression models, one of the most commonly 

used in yield prediction is linear regression. Linear regression uses one variable at a time to explain 

and predict the yield using separate equations for each (Aditya Shastry 2017) assuming that there 

is a linear relation between the yield and the explanatory variable, model residuals are almost 

normally distributed such that there is no clustering in the data (Sellam and Poovammal 2016). In 

their paper, Rembold et al. (Rembold et al. 2013), used linear regression with NDVI from SPOT 

(Satellite Pour l’Observation de la Terre) imagery to explain yield values and obtained an R2 of 

0.930 and 0.799 for the Morocco and Egypt study areas, respectively. Al-Gaadi et al. (2016) also 

used linear regression but used Landsat-8 and Sentinel-2 imagery for computing both NDVI and 

SAVI. They generated a linear regression equation per index per sensor per field and concluded 

that higher resolution imagery yielded better regression models where the Landsat-8 imagery 

resulted in an R2 range between 0.39 and 0.65 compared to 0.47 and 0.65 for the Sentinel-2 dataset.  

Similarly, different studies used linear regression on more than one index for yield 

prediction and obtained higher R2 values when considering other climate and soil variables 
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utilizing different sensors such as SPOT, Landsat 7, IKONOS as well as aerial imagery from UAS 

(Aboelghar, Ali, and Arafat 2014; Alganci et al. 2014; Geipel, Link, and Claupein 2014). A study 

compared the linear regression, stepwise multiple-linear regression and regression tree methods 

using the NDVI from Landsat-8 to predict winter wheat yield and concluded that the regression 

tree gave the best fit model with an R2 of 0.87 (Song et al. 2016). Song et al. (2016) explained that 

linear regression enabled them to understand if there was a relationship between NDVI and yield, 

while stepwise-multiple linear regression simplified the equation and avoided multicollinearity 

among variables and the regression tree showed the importance of every growth stage as to how it 

related to yield. The regression tree method (Dempewolf et al. 2014) used NDVI, SANDVI 

(Saturation-Adjusted Normalized Difference Vegetation Index) along with additional indices 

based on Landsat 5 and 7 and MODIS (Moderate Resolution Imaging Spectroradiometer) data to 

predict wheat yield in Pakistan. The results suggested that Landsat imagery provides better 

regression models due to the higher resolution, specifically with the Wide Dynamic Range 

Vegetation Index (WDRVI). A study comparing multi-linear regression (MLR) to step-wise linear 

regression showed with MLR the error is largely due to uncertainty in the variables. The reason is 

that MLR attempts to fit a linear model to more than one explanatory variable. However, the step-

wise linear model reduced the error by selecting the most relevant variables through binary 

relations between the dependent variable and the yield (Satir and Berberoglu 2016) using various 

indices including NDVI and NDWI. Contrary to the work of Satir and Berberoglu (2016), multiple 

studies showed the potential of multilinear regression with NDVI, in particular for tea crop yield 

prediction (Sitienei, Juma, and Opere 2017) and soybean and corn yield prediction in Iowa (Prasad 

et al. 2006) using AVHRR (Advanced Very High Resolution Radiometer) and Landsat data. In 

both works, one equation explained the yield by assigning a coefficient for each explanatory 
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variable to predict crop yield. Another recent approach in crop yield prediction is deep learning. 

This approach uses historical data as a training tool for the machine learning algorithm to forecast 

yield and is showing potential using various training models (Kuwata and Shibasaki 2015; You et 

al. 2017). Ordinary Least Squares (OLS) is another linear regression approach for yield prediction 

using indices derived from satellite imagery over the growing season or over the period of several 

seasons. However, the main issue with OLS is that it doesn’t account for spatial autocorrelation 

(L. Zhang, Lei, and Yan 2010). This is why research that applied spatial auto regression and 

Geographically Weighted Regression (GWR) did a better job in yield prediction when compared 

to OLS using NDVI from MODIS data (Tadesse et al. 2015; L. Zhang, Lei, and Yan 2010).   
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Chapter 3 Satellite Imagery for Crop Monitoring and Yield Forecasting in 

Idaho 

3.1 Introduction 

As the world continues to battle food insecurity, potatoes are considered important, fast 

growing, cheap and nutritious food source only behind rice, wheat and corn (FAO 2017; Rad et al. 

2015; Sivarajan 2011). The US Pacific Northwest is a leading potato producer and processor with 

a contribution of 57% towards the nation’s potato production in 2012 (Lewin et al. 2011). 

According to the National Agricultural Statistics Service (NAAS) most recent press release 

document (published online September 14, 2018) in 2017 Idaho produced 33.7% of the total US 

potato production, followed by Washington with 24.8% and Oregon 5.3% 

(https://www.nass.usda.gov/Statistics_by_State/Idaho/Publications/Crops_Press_Releases/2018/

PT09_1.pdf). Idaho alone is responsible for one third of the country’s potato shipments making 

potatoes an essential part of Idaho’s economy as it is responsible for employing 46% of the Idahoan 

agricultural processing workforce (Lewin et al. 2011).   

The implementation of precision agriculture informed by satellite imagery has the potential 

to aid agricultural practices and improve decision- making (Al-Gaadi et al. 2016; Khot et al. 2016; 

Kussul et al. 2017; Prasad et al. 2006; Satir and Berberoglu 2016; Wojtowicz, Wojtowics, and 

Piekarczyk 2016). The main aim for precision agriculture is to take into consideration the 

variability in the field rather than assuming that the field is uniform. Hence, all the field factors 

influencing growth and yield such as soil and topography are taken into account with precision 

agriculture approaches (Sivarajan 2011).  
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Satellite imagery for precision agriculture was introduced in the early 1970’s (Mulla 2013) 

and has been expanding ever since especially with its increasing availability and options for 

analysis. Both multispectral and hyperspectral satellite imagery provide a resource for crop 

management, yield prediction, and vegetation health to support decision making (Atzberger 2013; 

Govender, Chetty, and Bulcock 2007; Johannsen 2010; Wojtowicz, Wojtowics, and Piekarczyk 

2016). A challenge to satellite imagery analysis in the early 1970’s and 1980’s was the low spatial 

resolution of the available sensors and long revisit times (Atzberger 2013; Wojtowicz, Wojtowics, 

and Piekarczyk 2016). The increase in both spatial and temporal resolutions of satellite imagery in 

recent years provides a valuable resource for crop monitoring and specifically yield modeling and 

prediction. Not only has satellite imagery improved in quality, but it has also become more 

accessible to the public (Turner et al. 2015) through constantly updated datasets. For example, 

programs such as the European Space Agency’s Sentinel missions, Planet’s imagery products and 

Digital Globe’s WorldView 2 and 3 provide imagery with resolutions reaching up to 50 cm and 

high temporal resolution allowing daily availability of imagery for a given area of interest. With 

access to such rich datasets, researchers are able to explain how fields change over the course of 

the growing season and utilize this information to inform managers’ decision making for crop 

inputs and to forecast yield.   

Sentinel-2A, launched in June 2015, and more recently, Sentinel-2B launched in March 

2017, are two new multispectral imagers operated by the European Space Agency (ESA) covering 

13 spectral bands (443 nm – 2190 nm) at resolutions of 10 – 20 m and 60 m. The Sentinel-2 

program is filling a void for low-cost, medium resolution imaging with a five day revisit times 

depending upon latitude, cloud cover and other factors, to assess plant health and vigor during 

growing seasons (Dash and Ogutu 2016; Kussul et al. 2017). Gaadi et al. (2016) showed the 
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efficiency of using Sentinel-2 imagery along with various vegetation indices in predicting potato 

crop yield with a prediction model Root Mean Square Error (RMSE) as low as 4.96% in some 

fields. In addition, there is the PlanetScope satellite constellation operated by Planet that is freely 

available for university researchers. It has four spectral bands (455 nm – 860 nm) at a resolution 

of 3 m with a daily revisit. Both the Sentinel-2 mission and PlanetScope data are useful for 

precision agriculture applications.  

Despite Landsat imagery providing an important tool for yield monitoring over time, the 

emergence of higher resolution datasets with a shorter satellite return period demonstrates an 

increased potential for precision agriculture data collection. For example, a study that assessed the 

performance of different sensors with varying resolutions (5 m for RapidEye, 3 m for PlanetScope, 

10 m for Sentinel-2 and 30 m for Landsat) for yield monitoring concluded that higher resolution 

imagery gave more accurate results (Burke and Lobell 2017). While some previous studies on 

modeling yield prediction used Landsat (Song et al. 2016) and Sentinel-2 (Al-Gaadi et al. 2016), 

this study utilizes Sentinel-2A and PlanetScope analytical scenes for the analysis processing. 

The most common vegetation indices used for monitoring crop health status are 

Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index 

(GNDVI), Soil Adjusted Vegetation Index (SAVI) and Modified Soil Adjusted Vegetation Index 

2 (MSAVI2). The main difference is that NDVI reduces noise and provides an approach for 

comparing change over periods of time (A. Huete et al. 2002) while GNDVI is aimed towards 

detecting the greenness of the plant due to its sensitivity to chlorophyll content (Candiago et al. 

2015). Similarly, SAVI and MSAVI2 are vegetation indices less sensitive to bare soil in individual 

pixels. While SAVI does a great job with minimizing the effect of soil in vegetation, MSAVI2 

gives a more accurate estimation of wide range vegetation cover (Liu et al. 2007).  
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Satellite imagery has the potential to predict and monitor crop yield by correlating yield to 

different spectral bands, vegetation and water indices. These indices highlight crop health status 

and water stress. Previous yield studies demonstrated that the most efficient indices for yield 

prediction were NDVI (Prasad et al. 2006; Song et al. 2016; Yang et al. 2013), NDWI (Satir and 

Berberoglu 2016; Wojtowicz, Wojtowics, and Piekarczyk 2016; You et al. 2017) and SAVI (Al-

Gaadi et al. 2016; Satir and Berberoglu 2016; Sivarajan 2011). Based on the work done by Al-

Gaadi et al. (2016), yield was highly correlated to SAVI as it minimized the soil reflection.  

One of the basic methods for crop yield prediction is to form an empirical relation between 

values of vegetation indices and ground measures (Lobell 2013). By using samples collected from 

the field, the correlation between vegetation indices and yield is determined through plot scatter 

graphs (Al-Gaadi et al. 2016) and is used to determine the accuracy of the predictions by validating 

them on the ground. A crop yield-prediction model takes into consideration various vegetation 

indices to correlate yield values. Satir and Berberoglu (2016), used seven indices for MLR yield 

model to explain the relation between yield and the indices variables  

Regression analysis is a common approach to filter out the most significant spectral bands 

to explain crop yield and uses these band combinations and indices to create a prediction model. 

Sensors with varying spatial resolutions lead to different yield-prediction model accuracy. Prasad 

et al. (2006) used Advanced Very High Resolution Radiometer (AVHRR) with a 1.1 km resolution 

to calculate NDVI for predicting corn and soybean yield and obtained R2 values of 0.78 and 0.86, 

respectively. Moderate Resolution Imaging Spectroradiometer (MODIS) data ranging between 

250 m up to 1,000 m resolution, for soybean yield prediction using the water index NDWI gave a 

model accuracy of around 85% (Wojtowicz, Wojtowics, and Piekarczyk 2016; You et al. 2017) 

while the Hyperspectral Imager (Hyperion) sensor with a 30 m ground resolution NDWI values 
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gave an R2 of 0.75 for soybean prediction (Wojtowicz, Wojtowics, and Piekarczyk 2016). As for 

the Landsat 8, with a spatial resolution varying from 15 m to 100 m, predicting potato yield via 

SAVI resulted in an R2 of 0.81 (Sivarajan 2011) compared to a range of 0.39 – 0.65, according to 

the work of Al-Gaadi et al. (2016). Using NDVI based on Landsat 8 for wheat yield prediction 

resulted in an R2 of 0.87 (Song et al. 2016) and 0.67 (Satir and Berberoglu 2016). Sentinel-2 

imagery bands’ resolution of 10 m, 20 m and 60 m, for potato yield prediction gave an R2 range 

of 0.47-0.65 based on Al-Gaadi et al.’s work (2016).  

This work aims to expand the use of multispectral satellite imagery for potato yield monitoring 

and prediction. The research objectives are to support the following hypotheses: 

 Spectral indices provide an explanatory tool to understanding crop yield, in particular, 

SAVI and NDWI indices’ values and yield values have a direct correlation. 

 Spectral indices vary over the growing season based on the different growth stages of 

potato plants thereby allowing the indication of problems across the fields during critical 

times of the growing season. 

 Vegetation and water indices are inversely proportional as the higher the vegetation index 

value is, the lower the water stress index value is.  

 Higher temporal resolution imagery improves yield prediction models. 

A limitation identified early in this study was the temporal resolution contrast between 

Sentinel-2A with a 10-day revisit period and Planet imagery with a daily revisit. In order to detect 

changes in the field as the season progresses, higher temporal resolution imagery is essential. Not 

only does Planet imagery allow the observance of change on a more detailed level, it also 

compensates for cloudy days due to the frequent revisit time. However, with Sentinel-2A, a 
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temporal resolution of 10 days means that one cloudy day results in the loss of a crucial data point 

when compared to Planet data. Although the launching of Sentinel-2B on March 7th 2017increased 

the temporal resolution by cutting the revisit time to every five days, Sentinel-2B data was 

unavailable over the 2017 growing season. Thus, this study relied solely on Sentinel-2A imagery. 

Despite the limitation, this approach demonstrated in this work has the potential to apply globally 

to any potato producing region/country. Similarly, it is modifiable to other crops such as wheat, 

corn, cotton, etc. based on the specific main crop of any given area. 

 

3.2 Methods 

3.2.1 Study Area 

The study area is located near Parker in southeast Idaho within Fremont County, USA. 

There are ten fields within the area of interest as shown in Figure 9 with a total area of 402.98 ha 

(Table 5) Parker is located within Idaho’s agriculturally productive Snake River Plain at an 

elevation of 1,502 m above mean sea level and characterized by a humid continental climate where 

the winters are cold and summers are hot. Generally, the wettest month of the year is May while 

the driest is August with a total average annual precipitation of 357.6 mm (AgriMet 2017). Crops 

rely on irrigation with water drawn from the Henry’s Fork of the Snake River, which flows through 

the study area. Potatoes are the dominant crop in the area and the fields are on a potato and cereal 

grain rotation cycle where one year of potato planting is followed by two years of cereal crops 

before going back to planting potatoes (Grow 1993; Lewin et al. 2011). 
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Figure 9 Study area showing ten field locations near Parker, Idaho. (WGS 84 - UTM 12 N) 

 

 

Table 5 Field Areas 

 

The Idaho farmers supported the data analysis by providing information for each field that 

included planting dates and the potato variety (Table 6). Based on planting date and potato variety, 

the fields were sub grouped into three categories so that fields within the same group have similar 

growing timeline which influences the variables for the yield forecasting models depending on 

date and variety. Different planting dates result in offset between models while each potato variety 

has its own growth cycle (different maturity periods). 

Field 1 2 3 4 5 7 8 9 10 11 Total 

Area 

*102 

(m2) 

3,145 8,666 5,655 1,390 2,848 3,772 3,689 1,096 2,656 7,381 40,298 
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 G1: fields 2, 3, 4 and 5 planted with Norkotah potatoes on April 15th and 16th  

 G2: fields 1, 7, 8 (a & b ), 9 and 10 planted with Russet potatoes on April 13th and 14th  

 G3: fields 11 a & b planted with Norkotah potatoes on May 3rd  

 

Table 6 Crop Variety and Growing Information 

 

3.2.2 Image Processing 

The workflow is comprised of two main processes: satellite imagery processing and yield 

data processing (Figure 10) to which the results from both processes input into the yield prediction 

model. Sentinel-2 imagery was obtained from the U.S. Geologic Survey’s EarthExplorer website 

(https://earthexplorer.usgs.gov/). In order to be able to perform the analyses needed on the 

Sentinel-2 dataset, ESA’s SNAP software converted the top of atmosphere (TOA) values to 

surface reflectance using the Sen2Cor plugin for atmospheric correction. Twenty four 4 – band 

imagery scenes were downloaded from Planet website (https://www.planet.com/products/planet-

imagery/) via their education and research application interface. The PlanetScope imagery is the 

surface reflectance ready product provided by Planet so no further atmospheric correction was 

needed. A python code (Appendix A – Planet Python Code) extracted the individual bands needed 

for processing.  

Field Potato Variety  Planting Date Group Number of Planet Scenes 

1 Norkotah April 13 G1 24 

2 Russet April 15 G2 24 

3 Russet April 15 G2 24 

4 Russet April 16 G2 24 

5 Russet April 15 G2 24 

7 Norkotah April 13 G1 24 

8 (a & b) Norkotah April 13 G1 24 

9 Norkotah April 14 G1 24 

10 Norkotah April 14 G1 24 

11 (a & b) Russet May 3 G3 28 
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Figure 10 Satellite imagery and yield data processing workflow 

 

 

3.2.3 Yield Mapping 

 The farmer provided the yield data from the 2017 growing season, which was collected 

using the GK Technology for Agriculture sensor (Figure 11). The sensor attaches to the harvester 

and records the speed, yield, and pounds per second along with the geographic coordinates every 

0.8 meters by 10 meters. The raw yield data format is compatible with Microsoft Access.  

 

Figure 11 Speed sensor allowing cop yield monitoring. 

Source:http://www.geektechforag.com/Products/BYM/Beet_Yield_

Hardware/Beet_Yield_Hardware.aspx    
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3.2.4 Removing Data Outliers  

Yield data filtering consisted of removing outlier yield points from the dataset through 

three steps: (1) accounting for machine and human errors, (2) speed, yield values and (3) Anselin 

Local Moran’s I. Human and machine errors consisted where there was harvester taking partial 

paths, turn-around, in-field roads where there is no yield data and field edges with outlier yield 

values which resulted in a lack of sufficient data within such spots and were thus omitted. Since 

speed is an important factor that influences the data collection, it was essential to reduce the noise 

in the data through maintaining a margin of ±2σ (speed standard deviation) by removing points 

outside this range. In addition, yield values were constrained to a range of ±2.5σ (yield standard 

deviation). Examining the histogram and QQ plot of each field comprised the second step of the 

filtering process. The statistics of the histogram, the skewness and kurtosis, as well as the tail of 

the histogram provided a base for filtering outliers. The skewness value determines the asymmetry 

of the data and its histogram as well as determining the relationship between the data and the mean. 

As for the kurtosis, it determines the peakedness of the histogram. These two statistical values 

along with the visualization of the QQ plot allowed the filtering of the data. The last step was 

executing Anselin Local Moran’s I (Tiefelsdorf and Boots 1997) via the Geostatistical Analysis 

toolkit in Esri’s ArcGIS Pro 2.2.2 to determine any remaining outliers and/or clustering in the data. 

After removing the outliers, the data exhibited a normal distribution and was ready for processing.  

3.2.5 Crop Variability 

One of the main advantages of precision agriculture is taking into consideration the 

variability within the field rather than assuming it is uniform. Hence, dividing the field into 

subplots ensures accurate representation of indices’ variation and yield output within each zone. 

In order to determine an optimal subplot size, Esri’s Incremental Spatial Autocorrelation tool 
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measured the spatial autocorrelation for the data points in each field and reported the z-scores at 

which distance clustering is prominent. A cell size of 80 by 80 meters was selected to ensure 

consistency in analysis and represented the range of values returned from this step. After 

establishing cell size, the Fishnet tool creates the grids over each field. The Zonal Statistics tool 

reads in each raster layer from satellite imagery variable along with yield values and reports the 

mean value per grid cell. Due to the large number of available variables for both Sentinel and 

Planet datasets (three bands and five indices per date for the duration of the growing season), a 

Python code facilitated automated using the Anaconda Spyder compiler. This code generated a 

geodatabase table and an Excel spreadsheet that had the variable name followed by the date as a 

header and the grid cells of each field consisted of the rows of the table. Similarly, the Zonal 

Statistics tool summarized the indices’ values throughout the field for every given date as shown 

in Figure 10. 

3.2.6 Vegetation and Water indices  

Due to the leaf cell structure and the varying reflectance response to different wavelengths 

of the electromagnetic spectrum, vegetation and water provide information about crop health 

(Table 7). Chlorophyll, the green pigment in vegetation, absorbs blue and red wavelengths while 

the green wavelength reflects partially. As for the near infrared section of the spectrum, it scatters 

and reflects by the cell walls in the mesophyll. In order to visualize the calculated indices, pixel 

values within an 80m x 80m grid cell were averaged for all 20 dates and added to the attribute 

table. In addition to that, the National Agriculture Imagery Program (NAIP) provided the access 

to the National Elevation Dataset which was used to calculate the slope then averaged within the 

fishnet grid squares and added to the attribute table as well.    
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Table 7 Spectral Indices 

 

3.2.7 Yield Forecasting 

The Python code (Appendix A – Planet Python Code) extracted all mean values for each 

index and bands red, blue and NIR along with the mean yield values for each grid cell making it 

suitable for running regression analysis to explain yield variability within the fields. Exploratory 

Regression in ArcGIS Pro helped reduce the number of potential explanatory variables for the 

yield model through several runs. Subsets of the explanatory variables included a selection of the 

Green, Red and Near Infrared bands while others used the different indices: NDVI, GNDVI, SAVI, 

MSAVI2 and NDWI. In addition, a subset included a combination of bands with spectral indices 

(Appendix B – Regression Models). From each run, the most significant variables became the new 

Vegetation Index Formula Reference 

Normalized 

Difference 

Vegetation Index 

𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑
 (Rouse et al. 1973) 

Green Normalized 

Difference 

Vegetation Index 

𝜌𝑁𝐼𝑅 − 𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅 + 𝜌𝐺𝑟𝑒𝑒𝑛
 

(Gitelson, Kaufman, 

and Merzlyak 1996) 

Soil Adjusted 

Vegetation Index 

𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑+𝐿
 * (1+L) (A. R. Huete 1988) 

Modified Soil 

Adjusted 

Vegetation Index 2 

2𝜌𝑁𝐼𝑅 + 1 − √(2𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

2
 (Qi et al. 1994) 

Normalized 

Difference Water 

Index 

𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅
 (S.K. 1996) 
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subset for the next run. After three exploratory regression runs, the variables that had the highest 

correlations were used for input into the Ordinary Least Square (OLS) tool.  

3.3 Results 

3.3.1 Variation of Indices over Growing Season 

All five indices used (NDVI, GNDVI, SAVI, MSAVI2, and NDWI) showed similar 

variation over the fields throughout the season (Figure 12, Figure 13 & Figure 14). However, the 

PlanetScope imagery gave a more detailed observation about what was happening in the fields 

along with determining critical dates and stages for the growing season due to its higher temporal 

resolution. The PlanetScope dataset identified specific dates regarding plant emergence, row 

closure and full maturity in addition to the dates with higher temperatures and increased 

evapotranspiration rates.   

In both the Sentinel and Planet imagery for all the fields, NDVI and SAVI increase 

gradually during the season to reach a peak value of 0.9 and then decrease to around 0.8. However, 

the limitation of Sentinel-2A availability resulted in fewer data points between critical times over 

the growing season (Figure 12, Figure 13, & Figure 14). PlanetScope imagery gave a more detailed 

interpretation of the variation between the weeks and the fields. While the water index seems to 

vary inversely proportional to the other indices, it actually varies negatively proportional to them. 

The water index measures the water stress level in the crops so when the plant is healthy and 

showing high NDVI and SAVI values, it indicates that it is rich in water and consequently the 

water stress is low. This is why the plot for the NDWI decreases over the growing season rather 

than increase to show the progress of the crop cycle and the plant’s response during different stages 

of the season such as emergence, full bloom and harvest.  
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Figure 12 Idaho: Russet Variety - G1 Fields 2, 3, 4 & 5 
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Figure 13 Idaho: Norkotah Variety - G2 Fields 1, 7, 8a, 8b, 9 & 10 
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Figure 14 Idaho: Russet Variety - G3 Fields 11a & 11b 
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Figure 15 Weekly average precipitation (mm) and temperature (ºC) over the growing 

season of 2017. 

Data source: https://www.usbr.gov/pn/agrimet/agrimetmap/terida.html 
 

 Potatoes are an irrigated crop and water is a very crucial element in the development of the 

crops. Thus, it is important to study precipitation and temperature records that relate to indices’ 

and yield values. A better understanding of those weather variables provides vital information 

related to critical weeks in the growth stages to help the farmers with irrigation decisions. The 

daily precipitation and temperature over the growing is from the Idaho National Lab (INL) weather 

station located at 43.841683 N, -112.41825 W. The data was downloaded through the Agrimet 

website, weekly averages were calculated and plotted into the same graph (Figure 15).  

3.3.2 Planet Data Yield Regression Model 

The dependent variable used is the yield as it is what we are trying to explain through the 

regression model. For all three fields groups, the different vegetation and water indices allowed 

the explanation and prediction of yield values. Averaging SAVI and slope values from the most 
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critical week for each potato variety resulted in a best-fit model for yield forecasting with highest 

R2 value and low VIF values. 

3.3.2.1 Russet Fields (Early Season) Regression Model 

The first group of fields (G1) includes fields 2, 3, 4 and 5 planted with Russet potato on 

April 15 and 16 (Table 6). The significant week for yield prediction was week 12 with the 

combination of average slope and SAVI as explanatory variables for yield (Table 8). With an R2 

value of 0.444, the model’s residuals followed a normal distribution with a bell shape and a random 

distribution of residual versus predicted values (Figure 16).  

Table 8 Russet fields regression model variables 

 

 

  

 

Figure 16 Summary statistics of Russet fields regression model 

Variable Coefficient  StdError t-Statistic Probability VIF 

Intercept 133.967 33.678 3.978 0.000*  

Average Slope -75.273 8.375 -8.988 0.000* 1.023 

SAVI 344.912 30.164 11.435 0.000* 1.023 
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3.3.2.2 Norkotah Fields (Early Season) Regression Model 

The second group of fields (G2) includes fields 1, 7, 8 (a & b), 9 and 10 planted with 

Norkotah potato variety on April 13 and 14 (Table 6). The significant week for this group of fields 

and potato variety yield prediction was week 10 using SAVI as the explanatory variable for yield 

(Table 9). With an R2 value of 0.570, the model’s residuals followed a normal distribution with a 

bell shape and a random distribution of the residual versus predicted values (Figure 17). 

Table 9 Norkotah fields regression model variables 

  
 

Figure 17 Summary statistics of Norkotah fields regression model 

 

 

3.3.2.3 Russet Fields (Late Season) Regression Model 

The last group of fields (G3) is fields 11 a and b planted with Russet potato later in the 

season on May 3rd (Table 6). The significant week for this group of fields and potato variety yield 

prediction was week 12 (3.3.2.1). The combination SAVI and slope are the explanatory variables 

Variable Coefficient  StdError t-Statistic Probability 

Intercept -193.982 40.188 -4.827 0.000* 

SAVI 800.392 41.542 19.267 0.000* 
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for yield (Table 10). With an R2 value of 0.633, the model’s residuals followed a normal 

distribution with a bell shape and a random distribution of residual versus predicted values (Figure 

18).  

 

Table 10 Russet field 11 regression model variables 

 

 
  

Figure 18 Summary statistics of Russet fields 11 regression model 

 

 

 

3.4 Discussion  

The graphs from the PlanetScope imagery indicated the different stages of growth for the 

potato plants. Despite the difference in potato variations and having a two week offset in maturity, 

all fields exhibit similar indices responses. As the plants started to emerge, the indices increased 

Variable Coefficient  StdError t-Statistic Probability VIF 

Intercept 296.297 118.158 2.508 0.017  

Average Slope 37.363 5.425 6.887 0.000* 1.001 

SAVI 208.697 99.517 2.097 0.044* 1.001 
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gradually to show a slight peak in values at around week 4. A significant drop in the curves also 

appeared at week 9 (Figure 12, Figure 13 & Figure 14). This drop indicates high stress levels in 

the crops relating to highly recorded temperatures, and winds, which meant the crops needed extra 

water to compensate for the weather conditions (Figure 15).  

With the Norkotah variety having an earlier maturity stage than the Russet crops by two 

weeks, the significant week for the Norkotah in both G1 and G3 despite the offset turned out to be 

week 10 as compared to week 12 on the Russet. All of the regression models proved that SAVI 

along with average slope best explain and predict yield (Appendix B – Regression Models). 

According to previous works and research, NDVI and SAVI are generally the best indices to 

explain yield (2.7), however, none of these studies use high temporal and spatial resolution as that 

of Planet neither do they incorporate elevation data into the regression model.  

 Utilizing the Planet data with the three meter resolution and almost a daily revisit time 

allows the capturing of high details within the fields as opposed to lower resolution data that results 

in merging pixels together and as a result falsely give higher model R2 values. In addition, in all 

the regression models of all three groups of fields (G1, G2 & G3) showed that the average slope 

is a significant explanatory variable for yield. The slope has a direct impact on the crops since with 

higher slope values, the land is subjected to erosion and as a result impact the quality and types of 

soil within the fields. In addition, the microtopograohy impacts the level of amount of water 

reaching the plants. Using spectral indices along with taking into account the microtopography as 

it constantly shows as a significant variable.  

 Satellite imagery shows promise to help farmers identify problems within the field early 

on as well as indicating critical time points in the growing season that are specifically important 

for yield prediction. Despite the fact that various indices reveal different information about the 
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crops, the combination of the three bands is the most important for crop yield prediction. However, 

there are some gaps that can only be closed by higher resolution data and as a result better improve 

the yield prediction model. Even though satellite imagery technology is rapidly advancing, 

integrating UAS imagery and potentially hyperspectral datasets into the analyses would be the next 

step in this work for an improved outcome. In addition, it is important to work closely with the 

farmer and perform on-site validation of what the indices show.   
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Chapter 4  Utilizing Satellite Imagery for Precision Agriculture in Lebanon 

4.1 Introduction  

Lebanon (Figure 19) relies heavily on its agricultural sector with an agricultural area of 

approximately 2,730 km2 out of a total 10,452 km2 (El Gazzar 2015). The agricultural sector 

contributes 7% to the GDP while providing work to 15% of the Lebanese population (FITA 2008). 

Potato crops account for 56% of vegetable production in the country, mainly in the Bekaa Valley 

and North Lebanon states (Hatoum 2005b). Hence, it is important to monitor the health and 

progress of potato crops to improve production in order to revive the local market as growers are 

having a hard time selling their produce (المراحل أخطر في نمر :درباس المزارعين معاناة سلام إلى نقل شهيب 

2015) and expanding the Lebanese economy by increasing potato exports. The Bekaa Valley, 

located in the center of Lebanon, is one of the largest agricultural regions in the country as the 

valley is 120 km (75 miles) long and averages 16 km (9.9 miles) across with potatoes as its main 

crop. Potatoes are an important irrigated crop vulnerable to water stress, pests, disease and other 

crop threats. Precision agriculture has the potential to help minimize such issues and improve crop 

yield by empowering farmers with timely scientific knowledge on crop conditions. This approach 

offers valuable guidance to farmers; however, in a country such as Lebanon, precision agriculture 

is still in its early stages of adoption. Lebanon recently teamed up with the Food and Agriculture 

Organization of the United Nations on May 16, 2016, to launch the Country Programming 

Framework from 2016 to 2019 (United Nations Food and Agriculture Organization 2016) to 

develop more sustainable practices to improve the agricultural sector and may include the concept 

of precision agriculture.  
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Figure 19 Lebanon Elevation Map. Elevation Dataset: Global Multi-resolution 

Terrain Elevation Data 2010 (GMTED 2010) – USGS EarthExplorer Website 
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This study aims to show the potential of precision agriculture through utilizing both open-

access satellite imagery and high-resolution satellite imagery to monitor crops throughout the 

growing season and identify critical dates during the growing season with the goal to help farmers 

with important decision- making. The primary objective of this study is to submit this work to the 

Lebanese Ministry of Agriculture to demonstrate how satellite image analysis can assist farmers 

to respond to crop health issues. 

Satellite imagery technology has improved steadily since the early 1970’s, as reflected by 

increased sensor resolution and expanding applications of satellite imagery to cover precision 

agriculture applications (Mulla 2013). Not only has satellite imagery improved in quality, but they 

have also become more accessible to the public (Turner et al. 2015) through constantly updated 

datasets such as the Sentinel-2 mission by the ESA. Sentinel-2A, launched in June 2015, and more 

recently, Sentinel-2B launched in March 2017 which are two new multispectral imagers covering 

13 spectral bands (443 nm – 2190 nm) at resolutions of 10 – 20 and 60 m. The Sentinel-2 program 

is filling a void for low-cost, medium resolution imaging with 5 day revisit times depending upon 

latitude, cloud cover and other factors, to assess plant health and vigor during growing seasons 

(Dash and Ogutu 2016). In addition, there is the RapidEye satellite constellation operated by Planet 

Labs that is freely available for university researchers. It was launched on August 29 of 2008 with 

5 spectral bands (440 nm – 850 nm) at a resolution of 5 m. Both the Sentinel-2 mission and 

RapidEye data are partially aimed for agricultural uses making them an ideal source for researching 

precision agriculture.  

Irrigation plays a major role in the health status of potato crops, and as the world’s climate 

is constantly changing, it is important to analyze water stress and content in crops to manage water 

resources more efficiently and to assess what irrigation techniques are the most efficient. 
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According to research performed in Egypt, (Nahry, Ali, and Baroudy 2011), using satellite imagery 

proved to be very effective in increasing economic profitability and environmental sustainability 

respectively by 29.89% and by limiting fertilizers and irrigation to where it is only needed. Using 

multispectral satellite imagery such as Sentinel data, NDWI could be easily calculated to provide 

a better assessment of water stress in agricultural fields (Gao 1996).   

The main vegetation indices used for monitoring crop health status are NDVI, GNDVI, 

SAVI and MSAVI2. Both NDVI and GNDVI have similar purposes in which they reflect how 

dense the vegetation by showing the health status of the dense leaf cover of the planted area. The 

main difference is that NDVI reduces noise and provides an approach for comparing change over 

periods of time (A. Huete et al. 2002) while GNDVI is more aimed towards the greenness of the 

plant due to its sensitivity to the chlorophyll content and is related to the Leaf Area Index 

(Candiago et al. 2015). Similarly, SAVI and MSAVI2 are vegetation indices less sensitive to bare 

soil in the pixel. While SAVI minimizes the effect of soil in vegetation, MSAVI2 gives a more 

accurate estimation of wide range vegetation cover (Liu et al. 2007). 

This study focused on demonstrating the potential of Sentinel-2 and PlanetScope imagery 

to monitor crop progress over the growing season and identify important growth stages for yield 

prediction. Our hypothesis is that low vegetation or water indices during critical times over the 

growing season indicates problems in the field and will correspond to lower yield. Despite the 

offset in the season between Lebanon and Idaho, and the difference in potato varieties, the Idaho 

potato yield forecasting model is adjusted and used to predict yield in the Lebanon fields. This 

study demonstrates the importance of high spatial and temporal resolutions for more accurate 

results in depicting changing crop condition over the growing season.  
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4.2 Methods 

4.2.1 Study Area 

The study area is located in Tal Znoub in the southwestern part of the Bekaa Valley in 

Lebanon (Figure 20). It lies north of Quaroun Lake and is along the path of the Litani River. It is 

located at around 33.66 N latitude and 35.78 E longitude with an altitude of 872 m (5861 ft.) above 

mean sea level. Tal Znoub is located at 4 km north northeast of the city of Jeb Jannine, the capital of 

the West Bekaa.  

 
Figure 20 Location of Tal Znoub within the Bekaa Valley, Lebanon. 
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The overall area of the site is 462,264 m2 made up of 16 sub fields as shown in Figure 21 

and Table 11. Just like Lebanon overall, the study area has a moderate climate with the hottest 

months of the year between June through September, while the rainy season is between November 

and February. The area is known for growing mainly potatoes, vegetables, grapevines, and various 

grains including wheat. The Bekaa Valley is uniform when it comes to soil types mainly being Lithic 

Leptosols as the soil type comprising this study area in Tal Znoub.  

 

Table 11 Field Areas in m2 

Field ID Area (m2) Field ID Area (m2) 

1 6,047 8 29,008 

2 11,640 9 32,074 

3 19,128 10 35,069 

4 13,896 11 30,711 

5 24,386 29 16,864 

6 38,362 30 18,953 

7 65,375 33 51,012 

Total 392,525 
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Figure 21 Study Area showing the location of 16 fields within Lebanon in the WGS 84 

- UTM 36N coordinate system at a scale of 1:16,000 

Source of inset map: ArcGIS Online: 

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/LBN_Boundarie

s_2016/FeatureServer 

Beirut 
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4.2.2  Data Resources  

The satellite imagery for this work composed of Sentinel-2A and PlanetScope data. The 

USGS Earth Explorer interface allowed open access to the Sentinel-2A imagery where the data is 

freely available to the public thanks to the ESA, operated by European governments. The 

PlanetScope imagery operated by Planet, a non-governmental privately owned commercial 

company, made accessible through the Planet Application Program Interface through the 

Education and Research Program license (Table 12). The PlanetScope imagery was the base for 

digitizing the field boundaries within the study area location due to the high resolution of the 

imagery at 5 m. 

 

 Table 12 Satellite Imagery Sources 

 

 

Dataset Sentinel – 2A PlanetScope 

Data Source USGS Earth Explorer 
Planet Application Program 

Interface 

Data Operated by European Space Agency Planet 

Type of Organization Governmental Private/Commercial 

Data Access Free/Open access Research and Education License 

Number of Scenes 

Obtained 

16 68 

Data Link URL https://earthexplorer.usgs.gov/ https://www.planet.com/explorer/ 
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4.2.3 Data Pre–Processing 

The Sentinel–2A imagery was processed using ESA’s SNAP software for atmospheric 

correction via the Sen2Cor Plugin. The software takes level – 1C Sentinel imagery metadata and 

individual bands to convert the imagery from Reflectance Values Top of Atmosphere (TOA) to 

Surface Reflectance Bottom of Atmosphere (BOA) correction required in order to run indices and 

perform image analyses (L. Congedo 2016). A Python code (Appendix A – Planet Python Code) 

processed the Planet imagery where it iterated through folders and subfolders to read each raster 

file with its corresponding metadata to obtain the surface reflectance product. The code extracted 

the single bands of Green, Red and Near Infrared and saved them individually from the original 

stacked tiff file. As a result, both Sentinel and Planet data were atmospherically corrected and 

ready for processing and analysis.  

4.2.4 Data Processing  

Indices used for analyzing crop health status are outlined in Table 13 and include: NDVI 

and SAVI (Candiago et al. 2015). NDVI is a normalized ratio of near-infrared and red bands that 

ranges between -1 and 1 where areas with green plants have values above 0 and the higher the 

value the more photosynthetic activity there is due to the energy absorption of plant canopies. 

SAVI values between -1 and 0.1 are most likely not vegetated. This index has the variable L in its 

equation which is related to the density of vegetation and is used as a canopy background 

adjustment factor based on soil brightness (Candiago et al. 2015). For this research, the estimated 

value of L was 0.5 as by the recommendation of A. R. Huete (1988) since the fields have an average 

vegetation densities. 

After the correction of the Sentinel-2A scenes in SNAP, the needed bands (Near Infrared: 

Band 8, Red: Band 4 and Green: Band 3) were imported into Esri’s ArcGIS Pro 2.2.2 for 
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processing vegetation indices. In order to increase efficiency, the various indices’ formulas were 

integrated into a tool using model builder in Esri’s ArcGIS Pro and the output raster datasets were 

saved into a specific geodatabase for data management purposes. Similarly, the Python code 

mosaicked Planet scenes of the same dates together then calculated the indices of interest and 

saved them in to a specified folder while renaming them using the format DDMM.  

Table 13 Vegetation and Water Indices 

 

4.2.5 Data Post–Processing 

After the processing of all indices on the fields, “Zonal Statistics as Table” tool in ArcGIS 

Pro summarized the values obtained using the Python code for both Sentinel and Planet imagery 

with the fishnet over the fields as a grid. To maintain consistency in the outputs and to compare 

across both data sets, the grid size of the fishnet was fixed to 80 m by 80 m for the data summary. 

Using these grids, pixel values from individual bands along with indices’ values were averaged 

within each grid square and added to the attribute table. The shapefile with the updated attribute 

table was the input for the “stats” function (Appendix A – Planet Python Code) that exported the 

data in an Excel spreadsheet format for easy access. The statistics function within the python code 

read the mean values and generated excel spreadsheets based on the resulting statistical tables for 

each variable per imagery dataset as needed.  

Vegetation Index Formula Reference 

Normalized Difference 

Vegetation Index 

𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑
 

(Rouse et al. 1973) 

Soil Adjusted 

Vegetation Index 

𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑+𝐿
 * (1+L) (A. R. Huete 1988) 

Normalized Difference 

Water Index 

𝜌𝐺𝑟𝑒𝑒𝑛 −  𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑁𝐼𝑅
 

(S.K. 1996) 
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4.2.6 Information from Grower 

The Lebanese farmer supported the data analysis by providing information for the fields 

and the growing practices throughout the season (Table 14). The harvesting process involved 

manual extraction by digging up potato tubers while the crop canopy was still green. The green 

plant matter was removed and tossed into the field afterwards. 

Table 14 2017 Growing season information 

 

 

 

 

  

Due to the geographical similarities between Idaho and Lebanon, introducing the results 

from the calculated indices over the growing season – particularly from the Planet data, we are 

able to apply the yield prediction model from Idaho (3.3.2) to predict the yield for the Lebanese 

potato fields. The major difference between the two study areas is the size of the fields. Idaho 

fields are much larger in area than those of Lebanon. The main reason for the small size of the 

Lebanon fields is that the majority of the fields are inherited from father to sons and as a result 

they get subdivided when passed from generation to another.  

  

Planting Date February 20th 

Harvesting Date Approximately June 25th 

Potato Variety Agria 

Fertilizer/Pesticide Application Date April 20th 

Pesticide Re-application Every 20 days 

Overall Crop Yield Between 3 ton to 5 ton per 1000m2 
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4.3 Results 

4.3.1  Variation of Indices over Growing Season Sentinel-2 vs. Planet 

The indices vary throughout the season in alignment with one another where as both NDVI 

and SAVI increase, NDWI decreases (Figure 22, Figure 23, Figure 24 & Figure 25). Despite the 

difference in resolution between the Planet and Sentinel data, they both show consistent results 

and it’s hard to distinguish between the two datasets. The plots of the indices indicate an increase 

in index value corresponding to full maturity and row closure leading to high NDVI and SAVI 

values. The dips in the graphs on the other hand relate to the increase of temperature at different 

points throughout the growing season.  
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Figure 22 Variation of indices over the 2017 growing season 
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Figure 23 Variation of NDVI over the 2017 growing season Sentinel (A1: April 11, 

B1: May 11, C1: June10) vs. Planet (A2: April 17, B2; May 9, C2: June9) 
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Figure 24 Variation of SAVI over the 2017 growing season Sentinel (A1: April 11, 

B1: May 11, C1: June10) vs. Planet (A2: April 17, B2; May 9, C2: June9) 
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Figure 25 Variation of NDWI over the 2017 growing season Sentinel (A1: April 11, 

B1: May 11, C1: June10) vs. Planet (A2: April 17, B2; May 9, C2: June9) 
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4.3.2 Yield Forecasting 

The regression model from the Idaho data (3.3.2.2) predicted the yield values for the Lebanon 

fields (Figure 26). Due to the difference in potato variety, the approach was to calculate yield using 

the three models (3.3.2.1), (3.3.2.2) and (3.3.2.3). Though the Idaho model used averaged values of 

the variables within a fishnet cell size of 80m x 80m, the fishnet used to predict yield in the Lebanon 

data was 32m x 32m. The reason for that choice is the fact that the Lebanese farmer gave an 

approximation of the yield to have had a range of 3 ton to 5 ton per 1,000 m2. Hence, a 32m x 32m 

cell grid is the closest approximation to what the farmer provided. 

 

Figure 26 Predicted yield values (A) and the corresponding slope values (B) 
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4.4 Discussion 

Based on a visual interpretation, it is apparent that the fields can be subdivided into clusters 

with similar responses to the vegetation and water indices. Fields 1 through 5 showed consistency 

with each other, recording the highest NDVI and SAVI values and lowest water stress values. 

Those fields had similar predicted yield values and they correspond to the information from the 

farmer as he confirmed that they were the fields with higher yield values. This could be due to the 

geographic location of these fields as they are the closest to the Litani River, which could explain 

the higher indices values within these fields. As water is crucial for crop health and (3.3.2), the 

fields with higher proximity to the river showed better yield results. The farmer indicated that those 

fields have different soil type than the ones with lower yield values. In addition, the micro 

topography of the fields affected the yield values due to the variation in slope leading to uneven 

irrigation. The farmer has confirmed this as well and it is evident in the distribution of the predicted 

yield values within the fields. The farmer mentioned that there are three sprinklers every 100 

meters and the yield values are clustered in a 100 meter neighborhood showing the potential 

positions of the installed sprinklers.  

The NDVI plot from the Planet data (Figure 22) identifies the main dates for the potato 

growing season. The gradual increase in the NDVI values start from around week three which is 

when the leaves start developing and showing above the ground. There are two major peaks in the 

graph, the first peak corresponds to the row closure, meaning that the plants’ leaves are fully 

developed closing any gaps between individual plants. This is the point in the season where the 

plants are at their healthiest state. This week is particularly crucial since as the leaves reach full 

development, the tubers start initiating and developing so the farmers use this indication to apply 

the first round of pesticides. According to the Lebanese farmer, after the first application during 
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week eight, they reapply pesticides almost every 20 days prior to harvest to ensure better yield and 

protect the crops from harmful insects or organisms. The second peak is evident at week twelve 

which is around the time of when the when the tubers are done filling up and represent full maturity 

of crops prior to harvest. Throughout the growing season, there are various dips in NDVI values 

due to increases in temperature (Figure 27) and corresponding increases in evapotranspiration rates 

resulting in a decrease in the NDVI values. One of the main issues the Lebanese farmers had to 

deal with in this growing season was the increase of temperatures above their average annual 

values. The three major dips in the growing season correspond to recorded temperatures of 24º C, 

26º C and 29 C for May 12th, June 2nd and June 9th respectively. Due to the increase of temperatures 

during the critical week of tube filling (around week 10), the yield of the fields suffered and 

resulted in lower production than initially expected according the farmers.  

 

 

Figure 27 Average daily temperature 2017 growing season (°C) 
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Through the various indices processed for Sentinel-2 and the Planet data, satellite imagery 

demonstrated that it is a reliable source for analysis and for precision agriculture applications. All 

the indices showed compatibility with one another. The Sentinel-2 imagery depicted the rough 

main points that are critical during the growing season while PlanetScope delivered a more 

accurate representation due to the higher temporal and spatial resolution. Despite Sentinel showing 

the potential of open source data for crop monitoring and yield prediction, having a lower 

resolution data for small area fields leads to less accurate results. The reason being is that with 

lower spatial resolution, details are overlooked and responses from the crops get blurred and thus 

it becomes harder to depict important variation that occurs with fields. In addition, the lower 

temporal resolution of Sentinel with a return period of 5 – 10 days limits the data points that may 

be available especially if obscured by cloud coverage. Hence, with PlanetScope data and a 1 day 

return period, not only is the higher temporal resolution key to a denser dataset, but also the higher 

spatial resolution allows the delivery of higher detailed output.  

This study highlights the potential of precision agriculture to support decision making for 

crop management practices throughout Lebanon. Though this research was limited to satellite 

imagery only, utilizing UAS data is another additional resource for crop management in Lebanon 

especially with smaller crop sizes. As important as it is to monitor crops’ health status, it is equally 

vital to detect crop viruses and threats but with the current available satellite imagery resolution, 

that is not yet achievable. With UAS imagery, the resolution is capable of taking this work a step 

further. With the Lebanese farmers’ openness to UAS technology, presenting this work to the 

Lebanese Ministry of Agriculture and outlining the potential of UAS, it would be more realistic to 

implement. With the support from the Ministry of Agriculture, proper arrangements with the 

Lebanese Army forces, one could obtain the needed permission and protection to fly UAS and 
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capture high-resolution aerial imagery. This would be combined with fieldwork using a 

spectrometer that allows the plotting of healthy versus sick plant signals to serve as a control to 

what is remotely observed. In addition, working closer with the farmers leads to more accurate and 

updated information regarding the fields, which was one of the major obstacles for this work due 

to poor communication with the farmer because of geographical barriers. With UAS data 

collection, a higher resolution elevation model generated from the data allows for better study of 

the micro topography of the fields that is directly related to the water intake of the plants.  

In addition, this research demonstrated the potential of using satellite imagery to forecast 

yield. Though there is a difference between the Idaho and Lebanon fields regarding the potato 

varieties, offset in the planting dates and variation in microtopography, the preliminary result of 

the model aligned with the input from the farmer. The yield values themselves weren’t accurate, 

which is expected due to the limitation of difference in variables between the two locations, 

however higher yield values showed up in the correct fields according to the Lebanese farmer. For 

further improvements, the model should take adjust to the different potato varieties and their 

corresponding growth cycle.   
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Chapter 5 Conclusion 

Satellite imagery is a strong tool for monitoring crops and predicting yield. The biggest 

advantage of using the precision agriculture approach is the ability to take into consideration the 

variation within the field as opposed to the assumption that variables such as microtopography and 

soil types within the field are uniform. With each spectral band delivering specific information 

about the plants based on the reflectance signature, combining slope data with vegetation or water 

index values – particularly SAVI or NDVI allows the prediction of yield. NDVI provides 

information about the health status of the crops and can help with decision regarding adding 

nutrients and water to plants when needed based on the index value. Both vegetation and water 

indices provided important dates within the growing season and showed what week was the most 

critical for a better yield. The study areas in Idaho and Lebanon complemented one another; the 

Lebanon area had a denser dataset due to cloud cover being at minimum that gave a more detailed 

observation of crop variation over the growing season while Idaho has accurate yield data that 

allowed the development of a yield forecasting model that is applicable to Lebanon.  

As with any scientific research, this work faced a few issues that put a limit on the 

processing and analysis done. One hurdle this work faced was the remote location of the Lebanon 

study area. Doing this work over a study area in Lebanon while being physically present in Idaho 

meant that we were unable to perform on-site validation for our observations. With the satellite 

imagery, though Sentinel-2 has a 5 day revisit period, the unavailability of Sentinel-2B meant that 

we were limited to Sentinel-2A with a 10 revisit period cutting the potential number of available 

scenes at least by half depending on cloud coverage. As for the Planet data, though we were able 

to obtain almost daily imagery over Lebanon, the Idaho study area had a much higher cloud 

coverage and drastically limited the number of available scenes for processing. This resulted in a 
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gap between the Lebanon and Idaho datasets in processing. Another limitation of having a study 

area in Lebanon and another in Idaho was the difference in potato varieties between the two. This 

resulted in a conflict with the yield prediction model especially that there was a lack of accurate 

yield data for Lebanon that would have allowed fine tuning the Idaho model to Lebanon for 

improved results. 

This work demonstrated the ability of satellite imagery to assist growers with decision 

making as we were able to depict critical dates in the growing season that ensures a good yield 

based on the specific variety and planting date. The Sentinel imagery is free and easily accessible 

to the public, and utilizing an open source processing software such as QGIS, reduces the cost on 

the farmer’s behalf for obtaining needed information. This data, and with the Sentinel-2B now 

available, has a 5 day revisit period which allows a detailed observation of indices’ variation over 

the growing season especially with it having a 10 m resolution and 13 spectral bands giving a 

wider range for spectral analyses. Meanwhile, with Planet, it provides a higher temporal and 

spectral resolution for a finer detail level of processing. However, this data has only four spectral 

bands thus limiting the analyses. In addition, with a spatial resolution of 3m and a daily revisit 

time, it is not a free resource adding to the financial burden on the farmers especially those with 

smaller fields particularly in Lebanon. For precision agriculture, it is vital for the satellite imagery 

to combine high spatial and temporal resolution. The high spatial resolution is important to detect 

change at a smaller scale while the increased temporal resolution ensures that important dates 

during the growing season aren’t overlooked.  

In summary, this thesis research concluded the following major points: 
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 Satellite imagery is showing promise to help farmers identify problems within the field 

early on and indicate critical time points in the growing season that are indicators for 

yield prediction. 

 In addition to how various vegetation indices reveal different information about the 

crops they allow the prediction of potato crop yield values. 

 Slope is a significant variable for yield forecasting. 

 Using previous yield data and utilizing high resolution satellite imagery, a yield 

prediction model is developed and can help the farmers with management decisions. 

 To better predict yield, it is crucial to take into consideration the potato variety and its 

corresponding significant week.  

 

Based on the yield information from Idaho, the current prediction models will serve as the 

building blocks for future models that are tailored to the potato varieties in Lebanon. Working 

closely with the Lebanese growers and obtaining numerical yield data will better validate the 

models and the results at hand. Moreover, the satellite imagery analyses indicated crucial times in 

the growing season for improving yield such as when to increase irrigation. In order for this 

information to be fully useful, it is essential to deliver it to the farmers for them to benefit from. 

The Lebanese Ministry of Agriculture is very involved with the farmers and constantly attempting 

to improve crop production, thus, presenting this work to them will help better spread the 

information on a larger scale and keep the farmers up to date with what precision agriculture has 

to offer them. Discussing with the Ministry of Agriculture about the importance of each critical 

week for specific potato varieties and its importance for yield prediction as well as best approaches 

to deliver the quantitative information to the growers in a qualitative form so that they could benefit 
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from it. In addition to that, using the broad workflow of this research work it could be applied to 

other crops based on the farmers’ interests and needs. The Sentinel-2A along with Sentinel-2B 

provides a high temporal resolution needed for the yield prediction models and this data is freely 

available through ESA. Using the Sentinel data along with QGIS and SNAP for image processing 

– which both are open source, the cost of would be reduced and as a result help promote the project 

with the Lebanese officials and farmers. Another approach is developing a web application that 

the farmers can access and retrieve updated information regarding their fields by the use of their 

smartphones especially that almost everyone owns a smartphone and has internet access. This 

application will be tailored to the specific needs and interest of the farmer and their fields for most 

effectiveness.  

Alongside satellite imagery, UAS platforms and sensors technologies are rapidly 

advancing, providing another valuable tool for precision agriculture applications. With the 

Lebanese growers expressing their openness to using this technology, using UAS is the next step 

for this work. Not only will it provide higher resolution imagery and elevation models, it is a faster 

more flexible approach without having to worry about cloud coverage limiting the data at hand. 

Although the political region around Lebanon is not currently stable, working with the Lebanese 

military will provide the needed security blanket to fly UAS missions for data collection. Utilizing 

UAS technology will improve the yield prediction model through the improved resolution and will 

allow the detection of anomalies within the fields that can indicate virus infected plants or 

irrigation issues. This will provide the farmer with more detailed information about what is going 

on in the field and help detect problems early and mitigate them.  
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Appendix A – Planet Python Code 

#Programming for MS GIS Thesis Work 

#By ABOU ALI, Hanan 

#---------------------------------------------- 

 

#Purpose: read in PlanetScope satellite imagery, run various vegetation indices 

#and compute zonal statistics based on areas of interest 

#----------------------------------------------------------------------------------- 

#----------------------------------------------------------------------------------- 

 

 

#function: Stats 

#arguments: none 

#purpose: Calculate Zonal Statistics & Generate Shapefile & Excel Sheet 

#------------------------------------------------------------------------------------ 

 

def Stats(): 

 

    #import needed modules 

    import geopandas as gpd 

    import pandas as pd 

    import glob 

    import os 

    from rasterstats import zonal_stats 

 

    #set directories  

    rsterDir=r'C:\Students\Hanan\Thesis_work\Data\Processing\Lebanon\LB_Planet\LB_Rasters' 

    mydir=r'C:\Students\Hanan\Thesis_work\Data\Processing\Lebanon\LB_Planet\LB_Rasters' 

    shpDir=r'C:\Students\Hanan\Thesis_work\Data\Processing\Lebanon\LB_Planet\shp' 

    procDir=r'C:\Students\Hanan\Thesis_work\Data\Processing\Idaho\ID_Planet\GridStats' 

 

    #change home directory 

    os.chdir(shpDir) 

 

    #read in fishnet shapefile 

    for shp in glob.glob('*.shp'): 

        print shp 

        shpNmeList=shp.split('.') 

        shpNme=shpNmeList[0] 

        rasterList=[] 

        gdf=gpd.read_file(shp) 

 

        #create attribute table headers 

        gdf['FID']=None 

        counterShp=0 
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        while counterShp<len(gdf): 

            gdf.loc[counterShp,'FID']=shpNme+'_'+str(counterShp) 

            counterShp+=1 

 

        #change directory to rasters 

        os.chdir(rsterDir) 

 

        #calculate and extract mean pixel values  

        stat= 'mean' 

         

        #populate attribute table with values              

        cols=[] 

        cols.append('FID') 

        #read in rasters & add to list 

        for rster in rasterList:     

            rster=rster.split('.') 

            rster=rster[0]           

            cols.append(rster) 

             

        #define data frame for new shapefile 

        df=pd.DataFrame(columns=cols) 

        counter=0 

 

        #reading file 

        while counter<len(gdf): 

            df.loc[counter,'FID']=gdf.loc[counter,'FID'] 

            counter+=1 

        for rster in rasterList: 

            os.chdir(rsterDir) 

            #calculate average pixel values  

            stats=zonal_stats(gdf,rster,stat)             

            #split name of raster variable to rename in attribute 

            rster=rster.split('.') 

            rster=rster[0] 

 

            #populate new shapefile with mean values 

            counter1=0 

            while counter1<len(stats): 

                stat=stats[counter1] 

                fld=df.loc[counter1,'FID'] 

                counter2=0 

                while counter2<len(df): 

                    if df.loc[counter2,'FID']==fld: 

                        df.loc[counter2,rster]=stat[stat] 

                    counter2+=1 

                counter1+=1 
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        os.chdir(mydir) 

 

        #export data as Excel spreadsheet 

        df.to_csv(shpNme+'_'+statVar+'.csv')     

        if statVar=='mean': 

            for col in cols: 

                if col!='FID': 

                    df[col]=df[col].astype(float) 

            

            gdfFinal=gdf.join(df.set_index('FID'),on='FID') 

             

            #save final shapefile with Mean pixel values           

            gdfFinal.to_file(shpNme+'_stats.shp',driver='ESRI Shapefile')                            

             

        os.chdir(shpDir) 

     

#function: Indices 

#arguments: rename, Green, Red & NIR (date of scene & corrected bands) 

#purpose: Calculate Vegetation and Water Indices 

#------------------------------------------------------------------------------------ 

 

def Indices(rename,Green,Red,NIR): 

 

    import arcpy 

    from arcpy import env 

 

    arcpy.env.workspace = entry 

 

    NDVI = ((NIR-Red)/(NIR+Red)) 

    NDVI.save("NDVI_"+rename+".tif") 

    print("NDVI calculated") 

 

 

    GNDVI = ((NIR-Green)/(NIR+Green)) 

    GNDVI.save("GNDVI_"+rename+".tif")  

    print("GNDVI calculated") 

         

 

    SAVI = (((NIR-Red)/(NIR+Red+0.5))*1.5) 

    SAVI.save("SAVI_"+rename+".tif")  

    print("SAVI calculated") 

         

         

    MSAVI2 = ((2*NIR)+1-SquareRoot(Square((2*NIR)+1)-8*(NIR-Red)))/2 

    MSAVI2.save("MSAVI_"+rename+".tif")     

    print("MSAVI2 calculated") 
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    NDWI = ((Green-NIR)/(Green+NIR)) 

    NDWI.save("NDWI_"+rename+".tif") 

    print("NDWI calculated") 

         

    print("---------------------------") 

    print("---------------------------") 

 

    env.workspace = entry 

     

    del rename 

    del Green 

    del Red 

    del NIR 

 

 

def main(): 

     

    import os 

    import arcpy 

    import re 

 

    from arcpy import env 

    from arcpy.sa import * 

 

    #initial directory with all the subfolders and raw satellite imagery 

    mydir = r"C:\Students\Hanan\Thesis_work\Data\4Band\Lebanon" 

    #directory to store the individual corrected bands and indices  

    rasters = r"C:\Students\Hanan\Thesis_work\Data\Processing\Lebanon\LB_Planet\LB_Rasters" 

 

    env.workspace =  mydir 

    env.overwriteOutput = False 

     

    #------------------------------------------------------------------------------------ 

     

    #define a list to store rasters (.tif) files 

    P_4Band = [] 

 

    #define a list to store metadata (.xml) files 

    P_Metadata = [] 

 

    #iterate through subfolders to find rasters & metadata files and add them to respective list 

    for root,dirs,files in os.walk(mydir): 

        for name in files:         

            if name.endswith("MS.tif"): 
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                mypath = root+"\\"+name            

                P_4Band.append(mypath) 

                 

                #-------testing code progress----------- 

                print(P_4Band) 

                print("---------------------------") 

 

            elif name.endswith("metadata.xml"): 

                mypath = root+"\\"+name 

                P_Metadata.append(mypath) 

                 

                #-------testing code progress----------- 

                print(P_Metadata) 

                print("---------------------------") 

 

    #-------------------------------end of file iterating------------------------------------------         

    #---------------------------------------------------------------------------------------------- 

 

    #progress report purposes and ensure name match between raster & metadata file 

    print(P_4Band) 

    print("---------------------------") 

 

    print(P_Metadata) 

    print("---------------------------") 

 

    #list element index counter 

    j=0 

    temp1 = 1 

 

    #reading through xml files  

    for entry in P_Metadata: 

 

        #read xml file & extract correction coefficients 

 

        #initiate a variable to read lines from metadata file 

        #coefficient locations based on PlanetScope product descriptions 

        #open up the metadata file for reading 

        doc = open(entry,"r") 

         

        i = 0 

        while i<208: 

 

            #read line by line 

            var = doc.readline() 

 

            #correction coefficient of band 2 (Green) 
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            if i==183:         

                temp = var 

                #clean out unwanted stuff & extract only the coefficient value 

                a_2=re.sub("<ps:reflectanceCoefficient>", "", temp) 

                a_2=re.sub("</ps:reflectanceCoefficient>","",a_2) 

                #-------testing code progress----------- 

                print (i) 

                print (a_2) 

 

            #correction coefficient of band 3 (Red)     

            elif i==192: 

                temp = var 

                #clean out unwanted stuff & extract only the coefficient value 

                a_3=re.sub("<ps:reflectanceCoefficient>", "", temp) 

                a_3=re.sub("</ps:reflectanceCoefficient>","",a_3) 

                #-------testing code progress----------- 

                print (i) 

                print (a_3) 

 

            #correction coefficient of band 4 (NIR)     

            elif i==201: 

                temp = var 

                #clean out unwanted stuff & extract only the coefficient value 

                a_4=re.sub("<ps:reflectanceCoefficient>", "", temp) 

                a_4=re.sub("</ps:reflectanceCoefficient>","",a_4) 

                #-------testing code progress----------- 

                print (i) 

                print (a_4)           

            

            i+=1 

         

        print("---------------------------") 

                 

        print(j) 

         

        print("---------------------------") 

        print("---------------------------") 

 

        #-------------------------------end of coeffcient reading--------------------------------------         

        #---------------------------------------------------------------------------------------------- 

 

        #to see which file its at 

        print(entry) 

 

        #rename date using format _DDMM       

        rename = entry[-43:-39]        
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        a = rename[2:] 

        b = rename[:2] 

 

        rename = a+b 

 

        print(rename) 

 

        #pulll out the image file that corresponds to the xml file       

        x = P_4Band[j] 

 

        #to verify that it has the matching set  

        print(x) 

 

        arcpy.env.workspace = entry 

 

        #first run  

        if j==0: 

             

            #do atmoshperic correction & indices' calculations here 

             

            #extract & save Green band from raster ensuring it has the full path  

            Green = Raster(os.path.join(x,"band_2")) 

            Green.save("B02_"+rename+"_old.tif") 

            #perform atmospheric correction for Green band & save 

            Green_correct = Green*float(a_2) 

            env.workspace = rasters 

            Green_correct.save("B02_"+rename+".tif") 

            #-------testing code progress----------- 

            print("Green band corrected & saved") 

            env.workspace = entry 

                 

            #extract & save Red band from raster ensuring it has the full path      

            Red = Raster(os.path.join(x,"band_3")) 

            Red.save("B03_"+rename+"_old.tif") 

            #perform atmospheric correction for Red band & save 

            Red_correct = Red*float(a_3) 

            env.workspace = rasters 

            Red_correct.save("B03_"+rename+".tif") 

            #-------testing code progress----------- 

            print("Red band corrected & saved") 

            env.workspace = entry 

                 

            #extract & save NIR band from raster ensuring it has the full path      

            NIR = Raster(os.path.join(x,"band_4")) 

            NIR.save("B04_"+rename+"_old.tif") 
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            #perform atmospheric correction for NIR band & save 

            NIR_correct = NIR*float(a_4) 

            env.workspace = rasters 

            NIR_correct.save("B04_"+rename+".tif") 

            #-------testing code progress----------- 

            print("NIR band corrected & saved")     

            print("---------------------------") 

             

            #-------------------------------end of band correction-----------------------------------------   

            #---------------------------------------------------------------------------------------------- 

 

            #assign corrected bands to variables for indicies' calculation 

            Green = Green_correct 

            Red = Red_correct 

            NIR = NIR_correct 

 

            #call Indices function 

            Indices(rename,Green,Red,NIR) 

 

            env.workspace = entry 

 

        #second run onward 

        if j!=0: 

                              

                #read the date of the entry & the one before it to see if same date but different scene 

                c1 = P_Metadata[j-1] 

                c2 = P_Metadata[j] 

 

                rename1 = c1[-43:-39] 

                rename2 = c2[-43:-39] 

 

                a1 = rename1[2:] 

                a2 = rename2[2:] 

 

                b1 = rename1[:2] 

                b2 = rename2[:2] 

 

                rename1 = a1+b1 

                rename2 = a2+b2 

                 

                if rename2 != rename1: 

                     

                    Green = Raster(os.path.join(x,"band_2")) 

                    Green.save("B02_"+rename+"_old.tif") 

                    Green_correct = Green*float(a_2) 

                    env.workspace = rasters 
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                    Green_correct.save("B02_"+rename+".tif")   

                    print("Green band corrected & saved") 

                    env.workspace = entry 

                         

                         

                    Red = Raster(os.path.join(x,"band_3")) 

                    Red.save("B03_"+rename+"_old.tif") 

                    Red_correct = Red*float(a_3) 

                    env.workspace = rasters 

                    Red_correct.save("B03_"+rename+".tif") 

                    print("Red band corrected & saved") 

                    env.workspace = entry 

                         

                         

                    NIR = Raster(os.path.join(x,"band_4")) 

                    NIR.save("B04_"+rename+"_old.tif")     

                    NIR_correct = NIR*float(a_4) 

                    env.workspace = rasters 

                    NIR_correct.save("B04_"+rename+".tif")       

                    print("NIR band corrected & saved")     

                    print("---------------------------") 

 

                    #assign corrected bands to variables for indicies' calculation 

                    Green = Green_correct 

                    Red = Red_correct 

                    NIR = NIR_correct 

 

                    #call Indices function 

                    Indices(rename,Green,Red,NIR) 

 

                    temp1 = 1 

                    env.workspace = entry 

 

                elif rename2 == rename1: 

 

                #if same date but different scene use different naming system using additional 

parameter counter 

                            

                Green = Raster(os.path.join(x,"band_2")) 

                Green.save("B02_"+rename+"_old.tif") 

                Green_correct = Green*float(a_2) 

                env.workspace = rasters 

                Green_correct.save("B02_"+rename+"_"+str(temp1)+".tif")   

                print("Green band corrected & saved") 

                env.workspace = entry 
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                Red = Raster(os.path.join(x,"band_3")) 

                Red.save("B03_"+rename+"_old.tif") 

                Red_correct = Red*float(a_3) 

                env.workspace = rasters 

                Red_correct.save("B03_"+rename+"_"+str(temp1)+".tif") 

                print("Red band corrected & saved") 

                env.workspace = entry 

                     

                     

                NIR = Raster(os.path.join(x,"band_4")) 

                NIR.save("B04_"+rename+"_old.tif")     

                NIR_correct = NIR*float(a_4) 

                env.workspace = rasters 

                NIR_correct.save("B04_"+rename+"_"+str(temp1)+".tif")       

                print("NIR band corrected & saved")     

                print("---------------------------") 

                 

                #assign corrected bands to variables for indicies' calculation 

                Green = Green_correct 

                Red = Red_correct 

                NIR = NIR_correct 

 

                #call Indices function 

                Indices(rename,Green,Red,NIR) 

 

                temp1+=1 

                env.workspace = entry 

 

    j+=1     

 

    Stats() 

 

if __name__=='__main__': 

    main()    
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Appendix B – Regression Models 

G1: Fields 2, 3, 4 and 5 

Week Variable R2  Week Variable R2 

8 

B2 0.246  

10 

B2 0.294 

B3 0.248  B3 0.330 

B4 0.237  B4 0.243 

B2, B3 & B4 0.258  B2, B3 & B4 0.353 

GNDVI 0.255  GNDVI 0.321 

MSAVI2 0.244  MSAVI2 0.327 

NDVI 0.241  NDVI 0.325 

NDWI 0.255  NDWI 0.321 

SAVI 0.241  SAVI 0.325 

       

Week Variable R2  Week Variable R2 

11 

B2 0.278  

12 

B2 0.305 

B3 0.313  B3 0.401 

B4 0.386  B4 0.391 

B2, B3 & B4 0.391  B2, B3 & B4 0.454 

GNDVI 0.361  GNDVI 0.437 

MSAVI2 0.370  MSAVI2 0.445 

NDVI 0.366  NDVI 0.444 

NDWI 0.361  NDWI 0.437 

SAVI 0.366  SAVI 0.444 

       

  Week Variable R2   

  

13 

B2 0.214   

  B3 0.344   

  B4 0.564   

  B2, B3 & B4 0.580   

  GNDVI 0.452   

  MSAVI2 0.445   

  NDVI 0.459   

  NDWI 0.452   

  SAVI 0.459   
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G2: Fields 1, 7, 8 (a & b), 9 and 10 

Week Variable R2  Week Variable R2 

8 

B2 0.225  

10 

B2 0.435 

B3 0.229  B3 0.473 

B4 0.241  B4 0.191 

B2, B3 & B4 0.251  B2, B3 & B4 0.558 

GNDVI 0.422  GNDVI 0.558 

MSAVI2 0.415  MSAVI2 0.545 

NDVI 0.414  NDVI 0.570 

NDWI 0.422  NDWI 0.558 

SAVI 0.414  SAVI 0.570 

       

Week Variable R2  Week Variable R2 

11 

B2 0.338  

12 

B2 0.192 

B3 0.221  B3 0.193 

B4 0.201  B4 0.246 

B2, B3 & B4 0.614  B2, B3 & B4 0.337 

GNDVI 0.199  GNDVI 0.202 

MSAVI2 0.185  MSAVI2 0.214 

NDVI 0.185  NDVI 0.216 

NDWI 0.199  NDWI 0.202 

SAVI 0.185  SAVI 0.216 

       

  Week Variable R2   

  

13 

B2 0.251   

  B3 0.274   

  B4 0.221   

  B2, B3 & B4 0.327   

  GNDVI 0.228   

  MSAVI2 0.230   

  NDVI 0.235   

  NDWI 0.228   

  SAVI 0.235   
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G3: Fields 11 a and b 

Week Variable R2  Week Variable R2 

9 

B2 0.626  

10 

B2 0.588 

B3 0.631  B3 0.590 

B4 0.589  B4 0.604 

B2, B3 & B4 0.666  B2, B3 & B4 0.642 

GNDVI 0.614  GNDVI 0.601 

MSAVI2 0.618  MSAVI2 0.610 

NDVI 0.619  NDVI 0.607 

NDWI 0.614  NDWI 0.601 

SAVI 0.619  SAVI 0.607 

       

Week Variable R2  Week Variable R2 

11 

B2 0.597  

12 

B2 0.617 

B3 0.612  B3 0.628 

B4 0.624  B4 0.638 

B2, B3 & B4 0.642  B2, B3 & B4 0.639 

GNDVI 0.619  GNDVI 0.632 

MSAVI2 0.622  MSAVI2 0.633 

NDVI 0.621  NDVI 0.633 

NDWI 0.619  NDWI 0.632 

SAVI 0.621  SAVI 0.633 

       

  Week Variable R2   

  

13 

B2 0.616   

  B3 0.627   

  B4 0.624   

  B2, B3 & B4 0.645   

  GNDVI 0.626   

  MSAVI2 0.627   

  NDVI 0.628   

  NDWI 0.626   

  SAVI 0.628   
 


