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CHAPTER 1

Introduction and Background

Worldwide, cancer accounts for about 13% of all deaths [36]. This year, about

570,000 Americans are expected to die from cancer, which makes it responsible for

nearly 1 in 4 deaths in this country and the second most common cause of death in

the U.S. after heart disease [46].

At the cellular level, cancer begins with a mutation in a single cell that affects the

regulation of cell proliferation, cycling, and apoptosis. Such mutations can occur in

a cell in any part of the body and may occur spontaneously or be caused by either

external agents or inherited genetic factors [36]. Cell division allows the mutation to

be replicated. The resulting group of abnormal daughter cells can invade and destroy

surrounding normal tissue and form a tumor. While this primary tumor can certainly

be disruptive to the normal function of the body, in many solid cancers a much more

serious condition known as metastasis can occur. In metastasis, the malignant cells

spread through blood and lymph vessels to neighboring and even distant parts of

the body to create secondary tumors referred to as metastases. Even if the primary

tumor is located in a non-vital organ, its metastases may spread to vital organs. For

this reason, metastasis is the major cause of mortality, accounting for about 90% of

cancer-related deaths [36].

Throughout recorded history, efforts to find an effective treatment for cancer have

generally ended in frustration. As early as 3000 B.C., the Egyptian physician Imhotep

described how to distinguish cancer from a mere infection and pronounced “there is

no treatment [32].” Writing around 400 BC, Hypocrites observed that “It is better

not to apply any treatment in cases of occult cancer; for, if treated, the patients die

quickly; but if not treated, they hold out for a long time [12].”

1



The Roman encyclopedist Aulus Cornelius Celsus (30 BC to 38 AD) observed

that only the smallest tumors could be successfully removed. “Nor was any person

ever relieved by medicine but after cauterizing the tumours have been quickened in

their progress and increased till they proved mortal when they have been cut out and

cicatrized they have notwithstanding returned and occasioned death [6].”

Modern efforts have also met with limited success. The discovery that cells propa-

gate by division (by Robert Remak in the 1850’s [26]) lead to a deeper understanding

of the nature of cancer. Building on Remak’s discovery and autopsy studies, the

pathologist and doctor Rudolf Virchow (sometimes referred to as the “father of mod-

ern pathology”) proposed a model for breast cancer that became very influential in

the search for a cure. According to cancer researcher Michael Retsky and his col-

leagues [39], Virchow “suggested that the disease started as a single focus within the

breast, expanding with time and then migrating along lymphatic channels to the lymph

glands in the axilla. These glands were said to act as a first line of defense filtering out

the cancer cells. Once these filters became saturated the glands themselves acted as

a nidus for [further] spread to a second and third line of defense like the curtain walls

around a medieval citadel. Ultimately when all defenses were exhausted the disease

spread along tissue planes to the skeleton and vital organs.” The logical conclusion of

this “linear” model of cancer progression was that early detection and removal of the

primary tumor and surrounding tissue might cure the disease.

In Virchow’s time, surgery was a dangerous proposition. However, by the end

of the 19th century, antisepsis and anesthesia made surgery more practical and the

surgeon William Halstead, guided by Virchow’s model, pioneered the treatment of

breast cancer through mastectomy. Halstead’s early success and subsequent training

programs helped to position mastectomy as the standard treatment for the next 75

years [11]. When patients who underwent this procedure still continued on to develop

metastatic disease, the natural assumption was that not enough had been removed.

The surgical procedures became more extensive by removing all of the breast, the
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overlying skin, the underlying muscles, and the lymph nodes and, later, using follow-

up radiation to scour the tissue that remained near the surgical site. Radical surgery

and postoperative radiotherapy did reduce the chance of local recurrence, but it did not

improve overall disease-free survival. An overview study published in 1995 concluded

that “Some of the local therapies for breast cancer had substantially different effects

on the rates of local recurrence – such as the reduced recurrence with the addition of

radiotherapy to surgery – but there were no definite differences in overall survival at

10 years [18].”

As radical surgery was found to have limitations, focus shifted to earlier detection

through more widespread screening. Unfortunately, results for breast and prostate

cancer screening have been mixed. In the case of breast cancer, the advent of mammog-

raphy raised hopes that early detection and removal of primary tumors could pre-empt

the formation of metastases and lead to higher survival rates. As data from large-scale

clinical trials has been analyzed and interpreted, it has been observed that for every

life saved by early detection, 10 women were treated unnecessarily for cancer that was

not life-threatening and may even have gone away on its own if left untreated. A more

dramatic result of these trials was the observation of what has been called the mam-

mography paradox: for pre-menopausal women aged 40-49 with node-positive breast

cancer, early screening was associated with an increase in mortality rates [38], [39].

A similar scenario arose in the case of prostate cancer. In 1970, Richard Ablin

identified a protein produced by the cells of the prostate gland known as prostate-

specific antigen (PSA) [37]. High levels of PSA were associated with both localized

and metastatic prostate cancer and, once a quantitative blood test was developed,

could be used to screen for prostate cancer. PSA became widely used in screening for

prostate cancer, but results have been disappointing. It has been estimated that for

every one death prevented, about 50 men are needlessly treated for prostate cancer.

As Hanin [19] has observed, “very much like mammography, PSA screening led to

massive overdiagnosis, combined with failure to timely detect deadly tumors, decreased
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survival in a subset of cases, and reduced quality of life for those unduly treated.” A

study published in March 2011 concluded “After 20 years of follow-up the rate of death

from prostate cancer did not differ significantly between men in the screening group

and those in the control group.” [44]

The failure of early detection and treatment to prevent metastatic disease points to

a more complex reality underlying the development of the primary tumor, the mecha-

nism by which metastases are spread, and the interaction between the primary tumor

and metastases. The process of development and progression of cancer is generally hid-

den from the observer and the initiating events (such as the development of the first

malignant cell) are separated from the final outcomes by large temporal distances.

Mathematics is an indispensable tool for modeling unobservable events and pro-

cesses and for linking the cancer-initiating event to clinical outcomes that become

observable months, years, or even decades later. It can therefore play an important

role in understanding both the progress of cancer and its response to treatment. In

this work, we present a mathematical model for the progression of metastatic cancer.

We then fit this model to data in order to investigate four aspects of the complex

dynamics of cancer:

1. the relation between primary tumor size and the rate of shedding of metastases,

2. the timing of metastatic progression relative to the development of the primary

tumor,

3. metastatic dormancy, and

4. the interaction between the primary tumor and metastases.

In the remainder of this chapter we discuss some of the current ideas and observations

relevant to these four aspects.
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1.1. The relation between primary tumor size and the rate of metastasis

shedding

In order to understand the process of metastasis formation, we first examine how

the intensity of metastasis shedding is related to the size of the primary tumor. In order

to shed metastases, a tumor must have access to blood or lymph vessels. Beyond that,

it would seem reasonable to suppose that the larger the tumor, the more metastatic

cells can be shed. Cells near the surface of the tumor are known to be more actively

proliferating than those in the center [4], so metastasis shedding may have more to

do with the surface area of the tumor than the volume. It is also possible that the

surface area of the vascular network that supplies the tumor with nutrients, oxygen,

and growth factors might have an important effect.

1.1.1. Cancer Stem Cells. While our understanding of stem cells is still evolv-

ing, stem cells are generally defined as cells that have the ability to perpetuate them-

selves through self-renewal, the capacity for fast proliferation, and pluripotency, i.e.

the ability to generate mature functional cells of a particular tissue through differen-

tiation [41]. Stem cells show varying degrees of differentiation: cells of a fertilized egg

(embryonic stem cells) can obviously differentiate into all cell types, but other cells

within the body (such as hematopoietic stem cells) have been shown to have some

degree of differentiation, but can still give rise to further differentiated cells within

their particular lineage. Just as many normal tissues have a very small subpopulation

of stem cells, it may be that a tumor possesses a very small sub-population of cancer

stem cells (CSCs.) Because they would be less differentiated than the surrounding

tumor cells, CSCs may be less susceptible to drugs targeting tumor cells and form

a drug-resistant core that allows tumors to survive chemotherapy [7]. Given their

hypothesized pluripotency, high proliferative potential, and ability to produce metas-

tases, a small core of surviving CSCs would be able to perpetuate the disease even

after extensive treatment.
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The evidence for CSCs is strongest for blood cancers. For these cancers, tritium-

labeling studies conducted in the 1960’s suggested the presence of a sub-population

of primitive-appearing cells within the larger group of cancer cells [7]. But it wasn’t

until the late 1990’s that more conclusive evidence was produced by studies of acute

myelogenous lymphoma (AML) which showed that when human AML cell populations

are sorted according to certain cell-surface markers, some types can regenerate a human

AML cell population within immunodeficient mice while other types cannot [3]. In

the case of breast cancer, it has been found that cells with two particular surface

markers could be used to induce tumors in recipient animals with doses as small as

100 cells while doses of tens of thousands of cells with a different marker did not induce

tumors [7], [25]. Similar effects have been observed for certain brain tumors and for

human prostate cancer [28], [7].

While cancer stem cells offer an explanation for resistance to chemotherapy, they

also have implications for the effect of primary tumor size on the rate of metastasis

shedding. If CSCs are a key component of the metastasis shedding mechanism, then

metastasis formation would have more to do with the size of this subpopulation than

the overall size of the tumor. As suggested by self-renewal, stem cells are able to divide

in an asymmetric way. Rather than dividing symmetrically into two new stem cells

(which stem cells can do to increase their population) they can also divide into one

stem cell and one differentiated cell. Asymmetric division of CSCs would preserve the

number of CSCs while giving rise to other differentiated cells within the tumor. Thus

a tumor could shed many, many cells, and yet only those which are cancer stem cells or

poorly differentiated cells would have the ability to create a new tumor in a metastatic

site. In this case, the rate of metastasis shedding would be relatively constant and

proportional to the size of the relatively stable population of CSCs.
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1.2. The timing of metastatic development relative to the development of

the primary tumor

In the 1970’s, the failure of radical mastectomy to increase breast cancer survival

rates prompted a prominent researcher from the University of Pittsburgh, Bernard

Fisher, to speculate that cancer spreads via the blood stream and lymphatics even

before its clinical detection [13]. This suggests that the extent of surgery would have

little effect on patients’ survival. Numerous clinical trials showed that this is indeed

the case [13]. Thus, at the time of diagnosis, cancer cells may already be circulating in

the blood or lymph system and metastases may have already been seeded and begun

to grow in a host site.

In fact, circulating tumor cells (CTCs) were first observed in 1869 [2]. Since then,

CSCs have been confirmed by numerous studies. A recent study showed that about one-

third of breast cancer patients 7-22 years after mastectomy and without any evidence

of the disease had CTCs [30]. Levels of circulating tumor cells have been shown to

fall off rapidly after removal of the primary tumor [39], so continued presence of CTCs

years after removal of the primary tumor may suggest the presence of undetected

primary or secondary tumors. If so, the presence of CTCs from undetected tumors

gives credence to Fisher’s idea that metastases may be spreading long before detection.

Fisher posited that the early dissemination of metastases would mean that adjuvant

systemic therapies (such as chemotherapy) that treat for metastatic disease would

provide benefit even for tumors that appear to be very localized at the time of diagnosis.

This has been shown to be the case, but, unfortunately, with only a modest effect [18].

1.3. Metastatic dormancy

Regardless of the timing of dissemination, metastasis progression is a complex and

highly selective process, and may involve a considerable period of time. A metastatic

cell must be shed off the primary, migrate to and penetrate a blood or lymph vessel,

evade detection by the immune system, extravasate at a suitable location and begin
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to grow. Tumor cells in the lymph system are not simply caught in the lymph nodes,

and tumor cells in the circulatory system do not simply lodge in the first capillary bed

they encounter. They are much more mobile and able to traverse both systems as well

as cross the interstitial space between organs [13].

In addition to the time a metastatic cell spends in travel, it has been shown that

metastatic cells undergo a period of dormancy before they begin an irreversible pro-

liferation leading to a detectable secondary metastasis [33]. In order to grow beyond

about 106 cells (1-2mm in diameter), a solid tumor must develop its own blood supply

to overcome resource limitations [14], thus solitary cells or pockets of cells may remain

dormant in metastatic sites at undetectable levels for an extended period of time.

1.4. The interaction between the primary tumor and metastases

Animal studies have repeatedly demonstrated that there is an interaction between

the primary tumor and metastases. In 1905, Paul Ehrlich observed that mice that

already had a primary tumor exhibited resistance to grafts of a second tumor [17].

In some experiments, mice with artificially established tumors became refractory to

inoculation with a dose of tumor cells several orders of magnitude higher than the dose

required to produce a primary tumor in a normal mouse. At first this phenomenon was

thought to be caused by the animal’s immune system, and it was dubbed concomitant

immunity but later experiments with immunologically compromised mice showed that

this protection could not be due to an immune response [16]. It was also observed

that the level of protection increased with the size of the primary tumor and that when

implanted tumors were partially excised, it caused metastases to proliferate.

Research gradually came to focus on the interplay between tumors, growth and an-

giogenesis promoters, and growth and angiogenesis inhibitors. In the 1970’s, a promi-

nent oncologist and cancer researcher, Judah Folkman, was able to show that tumors

without a blood supply can grow to at most 1-2 mm in diameter [14]. He also used
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Millipore filters to separate tumors from their environs and show that tumors can in-

duce angiogenesis on the other side of the filter by a diffusible factor (an angiogenesis

promoter) that can travel 3-5 mm. Tumors were also found to produce angiogenesis

inhibitors, but these inhibitors are more stable than the promoters and could act over

much larger ranges [35], [34]. Rather than a single angiogenesis promoter/inhibitor

pair, there are actually multiple angiogenesis and tumor growth promotion/inhibition

pathways that may have some degree of interaction. This gives an explanation as

to how one tumor might suppress the growth of another: while promoting its own

vascularization and/or growth through short-range angiogenesis/growth promoters, a

tumor releases long-range angiogenesis/growth inhibitors that suppress the vascular-

ization/growth of other tumors. In the presence of growth inhibitors and without the

ability to obtain a blood supply, metastases could only grow to a limiting size and then

remain effectively dormant, unable to sustain further growth.

Removal of the primary tumor also removes the source of growth and angiogenesis

inhibitors which allows metastases to develop their own blood supply and accelerate

their growth without bound. Certainly metastases develop naturally even when the

primary tumor is not removed, but removal of the primary may throw the “angiogenic

switch” and hasten their progression. In addition, the wound healing process that

attends surgery would trigger the systemic production of growth and angiogenesis

factors.

Although much of the research on concomitant immunity has been conducted in

animals, there is evidence to suggest that it may also occur in humans. Studies in

terminally ill patients have demonstrated the suppression of a secondary tumor by a

primary tumor [15]. In certain cases of testicular cancer in humans, partial excision of

the primary tumor has been observed to exacerbate the disease [29]. In the mid-90’s,

Romano Demichelli et. al. [8] published a study of relapse data from 1173 early-

stage breast cancer patients who had been treated with only surgical excision of the

primary. When they examined the hazard rate for these patients, they found it to be
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trimodal with a sharp peak at 18 months, another at 30 months, a nadir at 50 months,

a broad peak at 60, and a long tail extending 15-20 years. Retsky et al. [39], [40]

posit that the third peak represents the slow natural progression of metastases from

single cells to avascular micrometastases and then to vascular metastases that grow

large enough for detection. They see the first and second peaks as corroborative of a

rapid development of metastases brought on by surgery and the attendant release of

growth and angiogenesis promoters as well as removal of the growth and angiogenesis

inhibitors that had been secreted by the primary tumor. They posit that avascular

micrometastases ”awakened” by surgery lead to the first peak and single metastatic

cells awakened by surgery lead to the second peak.

1.5. Summary

The conceptual framework for understanding the progression of cancer has evolved

in response to clinical/experimental observations and epidemiological studies. The

main shift has been from a view of cancer at a genomic and cellular level (one mutated

cell divides and slowly conquers regional territory until metastatic cells can be spread

to produce independent colonies in other organs) to a view of cancer at a systemic

level (primary and secondary tumors develop and interact between themselves and

with their microenvironment in a way that may be similar to the cells that comprise

organs.) In the next chapter, we develop a mathematical model of cancer progression

that is flexible enough to capture some of these systemic effects. In particular, the

results of our model-based analysis will shed light on

1. the relation between primary tumor size and the rate of shedding of metastases,

2. the existence of cancer stem cells,

3. the timing of metastatic dissemination relative to the development of the primary

tumor,

4. the duration of metastatic dormancy, and

5. the effects of primary tumor resection on the rate of growth of metastases.
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In the following chapters, we fit this model to data and then examine the resulting

parameters for insight into the processes at work.
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CHAPTER 2

Mathematical Model of Metastatic Cancer

2.1. A mathematical model of cancer progression

In our model, we divide the natural history of invasive cancer into three time

periods which we call the disease-free period, primary tumor growth, and metastasis

formation. Note that the last two periods may overlap.

Disease-free period. This period begins with the birth of the individual (or the

start of the exposure to a carcinogen in the case of an induced tumor) and ends with

the production of the first malignant cell whose clone will go on to create the primary

tumor. The production of this first cell marks the onset of the disease and we use the

variable T to denote the onset time (as measured from the time of birth or start of

carcinogen exposure.)

Primary tumor growth. We assume that once the primary tumor emerges, its

growth will be a deterministic function of time, t, as measured from the disease onset

at time T . We denote this function by Φ(t) and assume that it is strictly increasing and

continuous until the time of resection, if any. We will measure Φ in terms of the actual

count of cells, and so we have the initial condition Φ(0) = 1. The inverse function of

Φ will be denoted by φ.

Metastasis formation. We assume that metastases will be shed off the pri-

mary tumor according to a non-homogeneous Poisson process with intensity µ. In

the case of some cancers, including breast and prostate cancer, there is evidence to

suggest that only certain cells within the primary tumor are capable of producing

metastases [25], [28], [7]. If we denote the size of this sub-population of metastasis-

producing cells by N(t), then the shedding intensity should be proportional to N so

that we can find a constant α0 > 0 such that µ(t) = α0N(t). It is reasonable to
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assume that the number of metastasis-producing cells should be related to the size,

Φ, of the primary tumor. Specifically, we assume that there is a constant α1 such

that N(t) = α1Φθ(t) for some θ ≥ 0. Combining α0 and α1 into a single constant, α,

gives µ(t) = α0α1Φθ(t) = αΦθ(t). Because actively proliferating clonogenic cells are

typically located close to the tumor surface, one possible scenario is that the inten-

sity of metastasis shedding is proportional to the surface area of the primary tumor,

and because Φ is proportional to the volume of the tumor, the intensity, µ, would be

proportional to Φ2/3. This would give µ(t) = αΦθ, where θ = 2
3

and α is some (posi-

tive) constant of proportionality. Another possibility is that every cell in the primary

tumor has a chance to become metastatic; in this case θ = 1. On the other hand,

if only a small, persistent group of tumor cells are capable of producing metastases,

then we would expect N(t) to be constant. This would mean that the intensity would

be approximately constant in time and we would expect θ to be close to zero. As

discussed in the introduction, such would be the case for cancer stem cells, which can

divide asymmetrically to produce one new stem cell and one differentiated cell, thus

limiting the growth of their population. To allow our model more generality, we leave

the power on Φ unspecified and assume that µ(t) = αΦθ where θ is some non-negative

exponent.

Once a potential metastasis has been shed from the primary tumor, it still faces

many obstacles that would prevent it from becoming a detectable metastasis in a

secondary site. After it is separated from the primary tumor, it must migrate to and

penetrate a blood or lymph vessel in order to travel to another site. It then must

extravasate and invade the new site, survive through a period of dormancy, start to

proliferate, and induce angiogenesis in order to support its growth. All of this must

be accomplished while it evades the host’s immune system. We will assume that each

potential metastasis that is shed from the primary tumor has a fixed probability, q, of

accomplishing these tasks and becoming a detectable metastasis in a given secondary

site.
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Thus the production of viable metastases in a given site (as opposed to shedding

of potential metastases) is governed by what is known as a “filtered” Poisson process.

In the Appendix, we show that a filtered Poisson process of intensity µ(t) is a Poisson

process with intensity ν(t) = qµ(t) = qαΦθ(t).

We use the term inception to refer to the start of irreversible proliferation leading

to a detectable secondary tumor. As discussed in Chapter 1, there is experimental

evidence to suggest that metastases spend a period of time between detachment from

the primary tumor and inception. We assume that these latency times for different

metastases bound for a given secondary site are independent and identically distributed

with some probability density function (pdf) f . In the Appendix, we show that this

results in a “delayed” Poisson process with intensity

(2.1) λ(t) =

∫ t

0

ν(s)f(t− s)ds.

Observable events. Although the time of disease onset, T , is unobservable, we

can assume that at some time U ≥ T , a patient will be diagnosed with a primary

tumor and its size, S, will be measured. According to our growth law, S = Φ(U − T )

so we can use the inverse function φ to infer that φ(S) = U − T or

(2.2) T = U − φ(S).

If the primary tumor is resected, it will occur at some time, V , at or after diagno-

sis, i.e. V ≥ U . We will assume that at some time W (at either a follow-up visit or

at the time of death) the patient will be found to have developed observable metas-

tases. We will denote the number of observable metastases by n and their volumes

by X1, X2, . . . , Xn, where X1 ≤ X2 ≤ · · · < Xn. It is clear that W ≥ U , and we can

assume that W ≥ V because resection of the tumor after time W makes no difference

as far as our model or inference on its parameters are concerned. In cases where the
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primary tumor was not resected, we set V = W . Thus we have the timeline

0 (birth) ≤ T (onset) ≤ U (diagnosis)

≤ V (resection) ≤ W (measurement of metastases).

Metastasis growth. In Chapter 1, we observed that there is evidence in both

animals and humans to suggest that the presence of the primary tumor has an effect on

the growth rate of metastases. In order to investigate this effect, we will assume that

the growth of metastases in a given host site follows one function before resection and

another function after resection. Before resection, we assume that growth is described

by the function Ψ0. After resection, we assume that a new growth function, Ψ1,

acts multiplicatively on the size of the metastasis at the time of resection (as would,

for example, be the case if growth were exponential before and after resection, but

with different growth rates.) We assume that both Ψ0 and Ψ1 are strictly-increasing,

differentiable functions of time with Ψi(0) = 1, i = 0, 1. Because metastases begin

growth in their host sites at different times, each metastasis will grow for a different

amount of time pre- and/or post-resection. We define Y to be the time of inception of

a metastasis in a given secondary site as measured from the onset of the disease. Then

the size of the metastasis at time t (measured from inception) is represented by

ΨY (t) =


Ψ0(t) if t ≤ V − T − Y and Y < V − T,

Ψ0(V − T − Y )Ψ1(t− (V − T − Y )) if t > V − T − Y and Y < V − T,

Ψ1(t) if Y ≥ V − T.

Notice that V − T is the amount of time from onset to resection, V − T − Y is the

amount of time between inception of the metastasis and resection, Ψ0(V − T − Y ) is

the size of a metastasis at the time of resection, and t− (V − T − Y ) is the amount of

time the metastasis has been growing beyond the time of resection.
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Secondary metastasis. Although it is conceivable that the metastases themselves

might shed metastases of their own, we will assume that this shedding is negligible.

Metastasis detection. The volume of a metastasis becomes measurable when it

reaches some threshold value, m, determined by the sensitivity of the imaging technol-

ogy or survey method used to detect the metastases.

2.2. Distribution of the sizes of detectable metastases

Assume that at age W (the time of our final survey) a metastasis of size X is

detected. If we denote, as above, the inception time by Y (relative to the onset of the

disease), then according to our metastasis growth law,

X = ΨY (W − T − Y ) =

 Ψ0(V − T − Y )Ψ1(W − V ) if Y < V − T,

Ψ1(W − T − Y ) if Y ≥ V − T.

We now show that we can invert this relationship to discover the inception in terms

of the size at time W. Notice that W − T is the time from onset to final survey, so

W − T − Y is the total growth time for the metastasis from its inception to detection

at time W . We call W − T − Y the progression time of the metastasis and label it by

the variable y. Thus X = ΨY (W − T − Y ) = ΨY (y). By replacing W − T − Y with

y, the expression V − T − Y can be written as V + y −W or y − (W − V ). Also, the

inequality Y < V −T can be written as W −V < W −T −Y or W −V < y. Similarly,

the inequality Y ≥ V − T can be written as y ≤ W − V . With these simplifications,

the metastasis size, X, can be written in terms of the progression time, y, as

X = Ψ(y) =

 Ψ0(y − (W − V ))Ψ1(W − V ) if W − V < y ≤ W − T,

Ψ1(y) if 0 ≤ y ≤ W − V.

Thus, the function Ψ that relates the size of a metastasis to its progression time is

independent of Y ! So we can write X = Ψ(W − T − Y ). The progression time cannot
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exceed the time from disease onset to the final survey, so the maximum value of Ψ is

M = Ψ(W − T ) = Ψ0(V − T )Ψ1(W − V ).

Because of our assumptions on Ψ0 and Ψ1, Ψ is strictly increasing, continuous,

piecewise-differentiable, and satisfies Ψ(0) = 1. We find the inverse function ψ = Ψ−1

to be

(2.3) ψ(x) =

 Ψ−1
1 (x) if 1 ≤ x ≤ Ψ1(W − V ),

Ψ−1
0 ( x

Ψ1(W−V )
) +W − V if Ψ1(W − V ) < x ≤M,

which gives the metastasis’ progression time as a function of its size.

Theorem 1. The sizes X1 < X2 < · · · < Xn of metastases in a given host site that

are detectable at age W are equidistributed, given their number n, with the vector of

order statistics for a random sample of size n drawn from the distribution with pdf

defined by

p(x) =

 ω(W − T − ψ(x))ψ′(x), if m ≤ x ≤M,

0, if x /∈ [m,M ],

where

(2.4) ω(t) =

∫ min{t,V−T}
0

Φθ(s)f(t− s)ds∫ min{W−T−ψ(m),V−T}
0

Φθ(s)F (W − T − ψ(m)− s)ds

if 0 ≤ t ≤ W − T − ψ(m),

and F is the cumulative distribution function (cdf) of the metastasis latency time

corresponding to the pdf f .

Proof: Given the sizes of detectable metastases, X1 < X2 < · · · < Xn, at the

time of final survey, W , let τ = (τ1, τ2, . . . , τn) be the vector of corresponding inception

times counted from the onset of the disease. (These times can be found using τi =

W − ψ(Xi)− T .) Because our growth function,Ψ, is increasing, the larger the tumor,

the earlier its inception time, so τ1 > τ2 > · · · > τn. With m as our smallest detectable
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size, the latest possible inception time is W − ψ(m)− T , so a metastasis is detectable

if and only if 0 ≤ τi ≤ W − ψ(m)− T . Recall that the intensity of shedding of viable

metastases is given by ν(t) = qµ = qαΦθ(t). This holds until the primary tumor is

removed at time V , after which we set the shedding intensity to zero. Because of the

random latency time, the intensity of actual metastasis inception is (from (2.1)) given

by

(2.5) λ(t) = qα

∫ min{t,V−T}

0

Φθ(s)f(t− s)ds.

In the Appendix, we show that for a Poisson process X(t) with time-dependent

locally integrable rate λ(t), the joint pdf of the occurrence times given the number, n,

of events is

fW1···Wn|X(t)=n (w1, ..., wn) =

 n!ω(w1) · · ·ω(wn), for t ≥ wn > wn−1 > · · · > w1 > 0,

0 otherwise,

where ω (u) = λ(u)∫ t
0 λ(s)ds

.

Thus, in our context, the pdf of inception times is

pτ (t1, t2, . . . , tn|N = n) =

 n!ω(t1)ω(t2) . . . ω(tn) for W − T − ψ(m) ≥ t1 > t2 > > tn ≥ 0

0 otherwise,

where

ω (t) =
λ (t)∫W−T−ψ(m)

0
λ (s) ds

, 0 ≤ t ≤ W − T − ψ (m) .

Replacing λ(t) with its expression in (2.5) gives

ω(t) =
qα
∫ min{t,V−T}

0
Φθ(s)f(t− s)ds∫W−T−ψ(m)

0
qα
∫ min{u,V−T}

0
Φθ(s)f(u− s)dsdu

=

∫ min{t,V−T}
0

Φθ(s)f(t− s)ds∫W−T−ψ(m)

0

∫ min{u,V−T}
0

Φθ(s)f(u− s)dsdu
.
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Figure 1. Case i) V − T < W − T −Ψ(m)

In order to simplify the integral in the denominator, we notice that the domain of

integration is given by one of two cases:

Case i) V − T < W − T − ψ(m). In this case, s runs from 0 to min{u, V − T} and u

runs from 0 to W − T − ψ(m), see Figure 1. Reversing the order of integration has u

running from s to W −T −ψ(m) and s running from 0 to V −T . The integral becomes∫ V−T

0

∫ W−T−ψ(m)

s

Φθ(s)f(u− s)duds

Case ii) V −T ≥ W −T −ψ(m). In this case, s runs from 0 to u and u runs from 0 to

W − T − ψ(m), see Figure 2. Reversing the order of integration gives u running from

s to W − T − ψ(m) while s runs from 0 to W − T − ψ(m). The integral becomes∫ W−T−ψ(m)

0

∫ W−T−ψ(m)

s

Φθ(s)f(u− s)duds

The only difference in these cases is the upper bound on the outer integral, which

is V − T if V − T ≤ W − T − ψ(m) and W − T − ψ(m) if V − T > W − T − ψ(m).

So the two cases can be represented together by∫ min{W−T−ψ(m),V−T}

0

∫ W−T−ψ(m)

s

Φθ(s)f(u− s)duds.
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Figure 2. Case ii) V − T ≥ W − T −Ψ(m)

But this simplifies to∫ min{W−T−ψ(m),V−T}

0

Φθ(s)

∫ W−T−ψ(m)

s

f(u− s)duds

=

∫ min{W−T−ψ(m),V−T}

0

Φθ(s)F (W − T − ψ(m)− s)ds.

Thus we have

ω(t) =

∫ min{t,V−T}
0

Φθ(s)f(t− s)ds∫ min{W−T−ψ(m),V−T}
0

Φθ(s)F (W − T − ψ(m)− s)ds
, 0 ≤ t ≤ W − T − ψ(m)

As we have seen above, each inception time, ti, can be linked to a corresponding

metastasis size, xi, by the transformation xi = Ψ(W −T − ti) and we can thus use the

conditional distribution of the inception times to evaluate the conditional distribution

of metastasis sizes X = (X1, X2, . . . , Xn) given that N = n.

We begin by choosing δ > 0 to be sufficiently small so that the intervals in the set

{[xi − δ, xi + δ]}ni=1 are disjoint. We then compute

Pr{Xi ∈ [xi − δ, xi + δ], 1 ≤ i ≤ n|n = N}

= Pr{Ti ∈ [W − T − ψ(xi + δ),W − T − ψ(xi − δ)], 1 ≤ i ≤ n|N = n}

= n!
n∏
i=1

∫ W−T−ψ(xi−δ)

W−T−ψ(xi+δ)

ω(t)dt.
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As shown in (A.7) in Appendix A, dividing both sides by (2δ)n and taking the limit

as δ → 0 gives pX(x1, x2, . . . , xn|N = n) on the left. In order to evaluate the limit on

the right, we first prove the following lemma.

Lemma: If φ is an increasing differentiable function on an interval (c, d) containing

x, and ω is a continuous function on an interval [a, b] whose interior contains φ(x), then

limδ→0
1
2δ

∫ φ(x+δ)

φ(x−δ) ω(t)dt = ω(φ(t))φ′(t) .

Proof:

lim
δ→0

1

2δ

∫ φ(x+δ)

φ(x−δ)
ω(t)dt

= lim
δ→0

∫ φ(x+δ)

a
ω(t)dt−

∫ φ(x)

a
ω(t)dt+

∫ φ(x)

a
ω(t)dt+

∫ a
φ(x−δ) ω(t)dt

2δ

=
1

2
lim
δ→0

∫ φ(x+δ)

a
ω(t)dt−

∫ φ(x)

a
ω(t)dt

δ
+

1

2
lim
δ→0

∫ φ(x)

a
ω(t)dt−

∫ φ(x−δ)
a

ω(t)dt

δ

=
1

2

d

dx

∫ φ(x)

a

ω(t)dt+
1

2

d

dx

∫ φ(x)

a

ω(t)dt =
d

dx

∫ φ(x)

a

ω(t)dt.

By the Fundamental Theorem of Calculus, d
dx

∫ x
a
ω(t)dt = ω(x) for every x ∈ (a, b).

Notice that the function
∫ φ(x)

a
ω(t)dt is the composition of two differentiable functions,

so that by the chain rule, d
dx

∫ φ(x)

a
ω(t)dt = ω(φ(x))φ′(x) which completes the proof of

the Lemma.

Applying the previous Lemma, we see that

lim
δ→0

∫W−T−ψ(xi−δ)
W−T−ψ(xi+δ)

ω(t)dt

2δ
= ω(W − T − ψ(xi)ψ

′(xi)

and therefore

lim
δ→0

1

2δ
n!

n∏
i=1

∫ W−T−ψ(xi−δ)

W−T−ψ(xi+δ)

ω(t)dt = n!
n∏
i=1

ω(W − T − ψ(xi))ψ
′(xi)

Thus we have pX(x1, x2, . . . , xn|N = n) = n!
∏n

i=1 p(xi) where

p(x) = ω(W − T − ψ(x))ψ′(x) and this concludes the proof of the theorem.
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Remark 1. If the duration of the metastasis latency time is negligible, then

all inceptions must occur before resection of the primary tumor (i.e. t ≤ V − T )

and we have f(t − s) ≈ δ(t − s) and F (s) = 1 for s > 0. In this case, the integral∫ min{t,V−T}
0

Φθ(s)f(t−s)ds becomes
∫ min{t,V−T}

0
Φθ(s)δ(t−s)ds = Φθ(t) and the integral∫ min{W−T−ψ(m),V−T}

0
Φθ(s)F (W−T−ψ(m)−s)ds becomes

∫ min{W−T−ψ(m),V−T}
0

Φθ(s)ds

so that

(2.6) ω(t) =
Φθ(t)∫ min{W−T−ψ(m),V−T}

0
Φθ(s)ds

, 0 ≤ t ≤ min{W − T − ψ(m), V − T}

Remark 2. The parameter qα plays an important role in determining how many

metastases will be present at a given time. As a direct consequence of modeling the

inception of tumors as a Poisson process, the distribution of the number of metastases

in a given site that are detectable at time W is Poisson with parameter

∫ W−T−ψ(m)

0

λ(u)du =

∫ W−T−ψ(m)

0

∫ min{u,V−T}

0

qαΦθ(s)f(u− s)dsdu

= qα

∫ min{W−T−ψ(m),V−T}

0

Φθ(s)F (W − T − ψ(m)− s)ds.

However, the pdf p(x) = ω(W−T−ψ(x))ψ′(x) is independent of the number of metas-

tases, n, as well as the intensity of metastasis seeding determined by the parameter

qα. This is due to the fact that our distribution was conditional on the number of

metastases. Thus, the knowledge of the volumes of metastases detected in a given site

does not enable inference on the distribution of their number.

Remark 3. Maximum likelihood techniques can be used to estimate parameters

of a distribution when a random sample of size n is drawn from the distribution. The

likelihood of a particular set of observations is the product of the pdf evaluated at

each of the n observations. Although the observed volumes of detectable metastases

x1, x2, . . . , xn do not form a random sample from a probability distribution, the above

Theorem makes it possible to apply the method of maximum likelihood for estimation
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of model parameters. In fact, with the exception of the factor n!, the conditional pdf of

secondary tumor sizes pX(x1, x2, . . . , xn|N = n) = n!
∏n

i=1 p(xi), x1 < x2 < · · · < xn,

has the same form as the likelihood of the corresponding random sample from pdf p,

which suggests using L(X1, X2, . . . , Xn) = n!
∏n

i=1 p(Xi) to estimate the identifiable

parameters of the model. The same is true for any other rearrangement-invariant

statistic.

2.3. The distribution of the sizes of detectable metastases for exponentially

growing tumors with exponentially distributed latency times

In order to fit our model to data, we must assume some parametric form for the

growth of the primary tumor and metastases as well as for the distribution of tumor

latency times. The simplest model of tumor growth is exponential; so, we will assume

that the growth laws Φ,Ψ0, and Ψ1 are exponential, namely Φ(t) = eβt, Ψ0(t) = eγ0t

and Ψ1(t) = eγ1t. If we assume that the event of tumor inception is purely random

with hazard rate 1/ρ, then tumor latency times will follow the exponential distribution

f(s) = 1
ρ
e−s/ρ where ρ is the mean latency time. We compute

∫ min{t,V−T}

0

Φθ(s)f(t− s)ds =

∫ min{t,V−T}

0

1

ρ
eθβse−(t−s)/ρds

=
1

ρ
e−t/ρ

∫ min{t,V−T}

0

e(θβ+1/ρ)sds =
1

θβρ+ 1
e−t/ρ

[
e(θβ+1/ρ) min{t,V−T} − 1

]
and thus

ω(t) =

∫ min{t,V−T}
0

Φθ(s)f(t− s)ds∫ min{W−T−ψ(m),V−T}
0

Φθ(s)F (W − T − ψ(m)− s)ds
, 0 ≤ t ≤ W − T − ψ(m)

becomes

(2.7) ω(t) =
1

C
e−t/ρ

[
e(θβ+1/ρ) min{t,V−T} − 1

]
, 0 ≤ t ≤ W − T − ψ(m)

23



where

(2.8) C = (θβρ+ 1)

∫ min{W−T−ψ(m),V−T}

0

Φθ(s)F (W − T − ψ(m)− s)ds.

The inverse of Φ(t) = eβt is φ(x) = log(x)/β. From this, if the primary tumor is

of size X at time U , then the onset of disease must have occurred log(X)/β units of

time before U . We can then determine that the onset of the disease occurred at time

T = U − log(X)/β, where clearly we must have T ≥ 0.

The inverses of Ψ0(t) = eγ0t and Ψ1(t) = eγ1t are Ψ−1
0 (t) = γ−1

0 log t and Ψ−1
1 (t) =

γ−1
1 log t and using these in (2.3) gives

ψ(x) =

 γ−1
1 log x if 1 ≤ x ≤ eγ1(W−V ),

γ−1
0 log

[
xe−γ1(W−V )

]
+W − V if eγ1(W−V ) < x ≤ eγ0(V−T )+γ1(W−V ).

Simplifying the second part of this function gives

(2.9)

ψ(x) =

 γ−1
1 log x if 1 ≤ x ≤ eγ1(W−V ),

γ−1
0 log x+

(
1− γ1

γ0

)
(W − V ) if eγ1(W−V ) < x ≤ eγ0(V−T )+γ1(W−V ).

Before proceeding further, we simplify by using the substitutions

σ = θβ(2.10)

Q = V − T and(2.11)

R = W − V.(2.12)

Note that Q is the primary tumor progression time (of quiescence) from onset to

resection, and R is the time from resection to metastasis survey. With these, (2.9)

becomes

ψ (x) =

 γ−1
1 log x, 1 ≤ x ≤ eγ1R,

γ−1
0 log x+

(
1− γ1

γ0

)
R, eγ1R < x ≤ eγ0Q+γ1R

and using this expression for ψ, we compute
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(2.13) ψ′ (x) =

 (γ1x)−1 , 1 ≤ x ≤ eγ1R,

(γ0x)−1 eγ1R < x ≤ eγ0Q+γ1R

(2.14)

W − T − ψ (x) = Q+R− ψ (x) =

 Q+R− γ−1
1 log x, 1 ≤ x ≤ eγ1R,

Q− γ−1
0 log x+ γ1

γ0
R, eγ1R < x ≤ eγ0Q+γ1R,

and

(2.15) min {W − T − ψ (x) , V − T}

= min {Q+R− ψ (x) , Q} =

 Q, 1 ≤ x ≤ eγ1R,

Q− γ−1
0 log x+ γ1

γ0
R, eγ1R < x ≤ eγ0Q+γ1R.

Thus in the case when eγ1R ≤ m, we have

ω (W − T − ψ (x))

= 1
C
e
−
(
Q−γ−1

0 log x+
γ1
γ0
R
)/

ρ

[
e

(σ+1/ρ)
(
Q−γ−1

0 log x+
γ1
γ0
R
)
− 1

]
, m < x ≤ eγ0Q+γ1R

and in the case when eγ1R > m we have

ω (W − T − ψ (x))

=


1
C
e−(Q+R−γ−1

1 log x)/ρ [e(σ+1/ρ)Q − 1
]
, m ≤ x ≤ eγ1R,

1
C
e
−
(
Q−γ−1

0 log x+
γ1
γ0
R
)/

ρ

[
e

(σ+1/ρ)
(
Q−γ−1

0 log x+
γ1
γ0
R
)
− 1

]
, eγ1Q < x ≤ eγ0Q+γ1R

.

We can now use p(x) = ω(W − T − ψ(x))ψ′(x) to obtain

Case i) eγ1R ≤ m

p (x) = (C1x)−1 e
−
(
Q−γ−1

0 log x+
γ1
γ0
R
)/

ρ

[
e

(σ+1/ρ)
(
Q−γ−1

0 log x+
γ1
γ0
R
)
− 1

]
, m < x ≤ eγ0Q+γ1R
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which simplifies to

(2.16) p (x) = (C1x)−1

[(
eγ0Q+γ1R

x

) σ
γ0 −

(
x

eγ0Q+γ1R

) 1
γ0ρ

]
, m ≤ x ≤ eγ0Q+γ1R ,

where the constant, C1, is found from (2.8)

(2.17) C1 =
γ0

σ

[(
eγ0Q+γ1R

m

) σ
γ0

− 1

]
+ γ0ρ

[( m

eγ0Q+γ1R

) 1
γ0ρ − 1

]

Case ii) eγ1R > m

(2.18) p (x) =


(C2x)−1 γ0

γ1

(
x

eγ1R

) 1
γ1ρ

(
eσQ − e−

Q
ρ

)
, m ≤ x ≤ eγ1R,

(C2x)−1

[(
eγ0Q+γ1R

x

) σ
γ0 −

(
x

eγ0Q+γ1R

) 1
γ0ρ

]
, eγ1R < x ≤ eγ0Q+γ1R

where

(2.19) C2 = γ0ρ
(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

) 1
γ1ρ

]
+
γ0

σ

(
eσQ − 1

)
+ γ0ρ

(
e−

Q
ρ − 1

)
We call the model in (2.16) and (2.18) the “full model.”

We can simplify further by making the substitutions

(2.20) a =
σ

γ0

, b0 =
1

γ0ρ
, b1 =

1

γ1ρ
,A = eγ1R, and M = eγ0Q+γ1R.

Notice that A is the size that a metastasis incepted at the time of resection could grow

to by the time of survey and that M is the size that a metastasis incepted at the time

of disease onset could grow to by the time of survey, which is the maximum size of a

metastasis allowed by the model. These allow us to write p(x) as

Case i) A ≤ m ,

(2.21) p (x) = (C1x)−1
[(

M
x

)a − ( x
M

)b0], m ≤ x ≤M ,

where

C1 =
1

a

[(
M

m

)a
− 1

]
+

1

b0

[(m
M

)b0
− 1

]
and
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Case ii) A > m,

(2.22) p (x) =

 (C2x)−1 b1
b0

(
x
A

)b1 [(M
A

)a − ( A
M

)b0] , m ≤ x ≤ A,

(C2x)−1
[(

M
x

)a − ( x
M

)b0] , A < x ≤M

where

C2 =
1

b0

[(
M

A

)a
−
(
A

M

)b0] [
1−

(m
A

)b1]
+

1

a

[(
M

A

)a
− 1

]
+

1

b0

[(
A

M

)b0
− 1

]
.

2.4. A Note on Parameters and Parameter Recovery

The original biological parameters of our model were α0, α1, β, γ0, γ1, ρ, θ, q, and

T . Because of the conditional nature of the distribution of the sizes of metastases, α0,

α1, and q disappear (see Theorem 1 above.) This leaves the quantities β, γ0, γ1, ρ, θ,

and T . Further reduction of the set of model parameters depends on whether or not

the size, S, of the primary tumor at resection is known. When S is not known, θ and β

always appear together in the model as the quantity σ = θβ and cannot be separated.

This reduces us to the five parameters γ0, γ1, ρ, σ, and T (or γ0, γ1, ρ, σ, and Q where

Q = V − T .) When S is known, then β and T are related by

β =
log (S)

V − T

and this allows θ to be separated from β. In this case we can still consider the param-

eters to be σ and T (or σ and Q), but we can also use either β and θ or θ and T as

the parameters. Thus in any case the model becomes five-parametric.

We call the parameters A, M , a, b0, and b1 as defined in (2.20) “simplifying pa-

rameters” because they tend to simplify the way the model is expressed. On the other

hand, we call the parameters γ0, γ1, ρ, σ, and Q “native parameters” because they are

either original parameters (in the case of γ0, γ1, and ρ) or they retain a clear relation-

ship to the original parameters (in the case of Q = V − T and σ = θβ.) Writing the
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model in terms of native parameters is helpful for relating changes in the parameters

to their biomedical implications. For example, a decrease in a native parameter like

ρ would indicate a decrease in the average latency of metastases whereas a decrease

in a simplifying parameter like b0 might mean an increase in γ0 (metastasis growth

rate prior to resection) or ρ (mean latency) or both. As shown in [22], parameters A,

M , a, b0, and b1 are identifiable from the distribution p(x) of the sizes of metastases

in a given secondary site. We have already mentioned that A and M do have a clear

physical significance, but they are tied to a, b0, and b1 through γ0, γ1, and Q.

The equations in (2.20) can be inverted to give the native parameters in terms of

the simplifying parameters. First,

γ1 =
logA

R

and this allows us to find

ρ =
1

b1γ1

=
R

b1 logA
.

Once we have γ1 and ρ, we can obtain

γ0 =
1

b0ρ
=
b1γ1

b0

=
b1 logA

b0R
,

Q =
1

γ0

log
M

A
= b0ρ log

M

A
=
b0R log (M/A)

b1 logA
,

and

σ = θβ = aγ0 =
ab1 logA

b0R
.

If the size of the primary tumor at resection is known, then S = eβQ allows us to

find

β =
logS

Q
=

logS
b0R log(M/A)

b1 logA

=
b1 logA logS

b0R log (M/A)

which, in turn, allows us to find

θ =
σ

β
=
ab1 logA

b0Rβ
=
ab1Q logA

b0R logS
=
a log (M/A)

logS
.
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2.5. Model Analysis

When b0 6= b1 (i.e. when the growth rates γ0 and γ1 are unequal) the equation for

p in (2.22) has a discontinuity at x = A where the pdf jumps from

(C2)−1 b1
b0

(
A
M

) [(
M
A

)a − ( A
M

)b0] to (C2)−1 ( A
M

) [(
M
A

)a − ( A
M

)b0] . Because of this discon-

tinuity, we can consider the value of p at x = A to be either

p(A) = (C2)−1 b1
b0

(
A
M

) [(
M
A

)a − ( A
M

)b0] (particularly if x is approaching A from the

left) or to be

p(A) = (C2)−1 ( A
M

) [(
M
A

)a − ( A
M

)b0] (particularly if x is approaching A from right.)

For m ≤ x < A, we compute that

dp

dx
= (C2)−1 (b1 − 1)xb1−2 b1

b0

(
1

A

)b1 [(M
A

)a
−
(
A

M

)b0]

and therefore p is increasing when b1 > 1, decreasing when b1 < 1, and constant when

b1 = 1. This corresponds to an increasing function of x when ρ < 1/γ1 and decreasing

when ρ > 1/γ1.

Observe also that for A < x ≤M , p (x) = (C2x)−1
[(

M
x

)a − ( x
M

)b0] is a decreasing

function of x with p(M) = 0.
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CHAPTER 3

Submodels and Limiting Cases

In considering submodels of the Full model (2.16) and (2.18), it is helpful to consider

the model as having come from two stages: a nonhomogeneous Poisson process whose

events are the times of metastasis inception and a deterministic growth model that

converts inception times into observed sizes at the time of metastasis survey. When

written in native parameters, the Full model involves the five parameters Q, σ, ρ, γ0,

and γ1. Three of them, Q, ρ, and σ, pertain to the Poisson process while the remaining

two, γ0 and γ1, pertain to the deterministic growth model.

We now consider the bounds on these parameters and the models that result as

these parameters approach and/or attain their bounds.

Because Q is the time elapsed between onset and resection, we have 0 ≤ Q ≤ V .

Note that Q = 0 indicates onset occurred at the time of resection and Q = V indicates

onset occurred at birth.

Because ρ is the mean latency time, it can take any value zero or greater. We

call the case when ρ = 0 the “Instantaneous Seeding” case because in this case each

metastasis begins to grow immediately after being shed off the primary tumor. As ρ

tends to ∞, the model takes on another form which we describe below and call the

“Heavy-Seeding/Long-Latency” model.

The parameter σ relates to the intensity of metastasis shedding which, under the

assumption of exponential growth of the primary tumor, is given by µ(t) = αeθβt = αeσt

with α not appearing in the Full model because it is a conditional distribution. The

parameter β is the growth rate of the primary tumor and is bounded above because

there is a practical limit on the rate of cell division. (If td is the shortest time in which a

cell could complete the cell cycle, then β ≤ log(2)/td.) The parameter θ is intended to
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model the relationship between the size of the primary tumor and metastasis shedding,

e.g. if θ = 1, then shedding is proportional to primary tumor volume (which means that

every cancer cell has metastatic potential), if θ = 2/3 shedding would be proportional

to primary tumor surface area (which typically contains actively proliferating cells),

and if θ = 0, shedding intensity would be constant (which suggests the existence of a

stable subpopulation of cancer cells with high metastatic potential, perhaps “cancer

stem cells”.) There is, however, no theoretical upper bound on the value of θ. It is

true that the number of metastases shed in a particular time could not exceed the

number of cells that existed or were produced in the primary tumor during that same

time period, but this number could be controlled by adjusting α, which we have noted

does not appear in the conditional distribution. Hence, σ is only bounded by 0 and∞.

Biologically, it would be possible for the growth rate of the primary tumor to be 0 at

times, but in our model, the growth rate, β is constant and therefore must be nonzero

or no primary tumor would emerge. Hence the case when σ = 0 occurs if and only if

θ = 0. If θ = 0, then the shedding intensity remains constant while the primary tumor

is in place. We call the case when σ = 0 the “Homogeneous” case.

Like β, the growth rates γ0 and γ1 are bounded between 0 and a value γmax which

represents the biological upper limit on the rate of cell division. Notice that γ0 and

γ1 cannot both be zero if metastases are observed. A tumor that was incepted at

the time of disease onset would grow to size M = eγ0Q+γ1R by the time of metastasis

survey. Thus if xn is the size of the largest observed metastasis, then we must have

xn ≤ M or γ0Q + γ1R ≥ log xn. If γ0 = 0, all metastasis growth is suppressed by the

primary tumor and γ1 must be at least log(xn)/R. If γ1 = 0, all metastasis growth is

suppressed by resection of the primary tumor or its biological effects and γ0 must be at

least log(xn)/Q. Although γ0 is bounded above by γmax, when we search for optimal

values of the parameters by the method of maximum likelihood, we find that γ0 and σ

will become very large while ρ approaches 0. For this reason we consider this limiting
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Parameter and bounds Model at lower bound Model at upper bound
ρ ≥ 0 ρ = 0: Instantaneous Seeding ρ→∞: Heavy-Seeding/

model Long-Latency model
0 ≤ σ <∞ σ = 0: Homogeneous model σ →∞ : infinite

shedding intensity
0 ≤ Q ≤ V Q = 0: onset at resection Q = V : onset at birth.

0 ≤ γ0 ≤ γmax, γ0 = 0: complete suppression γ0 = θβ =∞, ρ = 0:
γ0Q+ γ1R ≥ log(xn) by primary. This requires IISMG

γ1R ≥ log(xn)
0 ≤ γ1 ≤ γmax, γ1 = 0: complete suppression γ1 = γmax: maximum growth

γ0Q+ γ1R ≥ log(xn) after resection. This requires after resection
γ0Q ≥ log(xn)

Table 1. Summary of Submodels and Limiting Cases. The value xn
denotes the largest observed metastasis size (in number of cells.)

case when γ0, σ → ∞, ρ → 0 and call this the “Instantaneous Infinite Shedding and

Metastasis Growth” (IISMG) model.

Table 1 sums up the cases. In the remainder of this chapter we derive the submodels

and limiting cases that were necessary for our data analysis. For convenience, these

models are summarized in Appendix B.

3.1. Submodels arising from alterations to the Poisson process

We can develop expressions for the submodels in effect at the bounds of the Poisson

parameters Q, σ, and ρ by considering the metastasis inception intensity function.

In the previous analysis, we developed the Full model by combining the metastasis

inception intensity function

λ (t) = qα

∫ min{t,V−T}

0

eθβs
1

ρ
e−(t−s)/ρds

=
qα

ρ
e−t/ρ

[
1

(θβ + 1/ρ)
e(θβ+1/ρ)s

]∣∣∣∣min{t,V−T}

0

=
qαe−t/ρ

ρθβ + 1

(
e(θβ+1/ρ) min{t,V−T} − 1

)
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=
qα

ρθβ + 1

 eθβt − e−t/ρ, 0 ≤ t ≤ V − T

e−t/ρ
[
eθβ(V−T )+(1/ρ)(V−T ) − 1

]
, t > V − T

with the metastasis growth function Ψ. Examining λ, we see that after onset and

until the primary tumor is removed, the intensity of metastasis inception grows pro-

portionally with the size of the primary tumor, but with a reduction in rate due to

metastases that are delayed by the random latency time. After resection, the intensity

decays exponentially as metastases that were shed from the primary tumor complete

their latency times.

3.1.1. Instantaneous Seeding Model. If we had not included the latency time

delay, i.e. if ρ = 0, we would have had an intensity of

λ (t) = qα

 eθβt, 0 ≤ t ≤ V − T

0, t > V − T .

We call the model arising in this case the “Instantaneous Seeding” model because it

assumes that once a metastasis is shed, it instantaneously begins to develop in a host

site. While the primary tumor is in place, the intensity is proportional to a power of the

size of the tumor, but drops to zero once the primary is removed because there are no

potential metastases awaiting inception. We develop the conditional size distribution

p(x) by computing

ω (t) =
λins (t)∫W−T−ψ(m)

0
λins (s) ds

=
eθβt∫ min{V−T,W−T−ψ(m)}

0
eθβsds

=
θβeθβt

eθβmin{V−T,W−T−ψ(m)} − 1
, 0 ≤ t ≤ min {V − T,W − T − ψ (m)}

Thus

ω (W − T − ψ (x)) =
θβeθβ(W−T−ψ(x))

eθβmin{V−T,W−T−ψ(m)} − 1
,

0 ≤ W − T − ψ (x) ≤ min {V − T,W − T − ψ (m)}
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and we consider two cases.

Case i) eγ1(W−V ) ≤ m

p (x) = ω (W − T − ψ (x))ψ′ (x)

= (γ0x)−1 θβe
θβ
(
V−T−γ−1

0 log x+
γ1
γ0

(W−V )
)

e
θβ
(
V−T−γ−1

0 logm+
γ1
γ0

(W−V )
)
− 1

, m ≤ x ≤ eγ0(V−T )+γ1(W−V )

= (γ0x)−1
θβ
(
eγ0(V−T )+γ1(W−V )

x

) θβ
γ0(

eγ0(V−T )+γ1(W−V )

m

) θβ
γ0 − 1

, m ≤ x ≤ eγ0(V−T )+γ1(W−V )

This simplifies to

(3.1) p(x) = C3x
− σ
γ0
−1
, m ≤ x ≤ eγ0Q+γ1R

where

C3 =
σ/γ0

m
− σ
γ0 − (eγ0Q+γ1R)

− σ
γ0

in native parameters or to

(3.2) p(x) = C3x
−a−1, m ≤ x ≤M

where

C3 =
a

m−a −M−a .

in simplifying parameters.

The same result as above can be obtained by taking the pointwise limit of p(x) as

ρ→ 0 in (2.16).

Case ii) eγ1(W−V ) > m

p (x) = ω (W − T − ψ (x))ψ′ (x)

= (γ0x)−1
θβ
(
e(γ0(V−T )+γ1(W−V ))

x

) θβ
γ0

(eγ0(V−T ))
θβ
γ0 − 1

, eγ1(W−V ) ≤ x ≤ eγ0(V−T )+γ1(W−V )
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This simplifies to

(3.3) p(x) = C4x
− σ
γ0
−1
, eγ1R ≤ x ≤ eγ0Q+γ1R

where

C4 =
σ/γ0

(eγ1R)
− σ
γ0 − (eγ0Q+γ1R)

− σ
γ0

in native parameters or to

(3.4) p(x) = C4x
−a−1, A ≤ x ≤M

where

C4 =
a

A−a −M−a

in simplifying parameters.

Taking the pointwise limit of p(x) as ρ→ 0 in (2.18) leads to a similar result that

only differs at x = A and x = M. For the Full model p(M) = 0, so limρ→0 p(M) = 0

and if we were to evaluate p(A) using the value on the left hand of the discontinuity,

we would have

lim
ρ→0

p(A) =
b1

b0

aA−a−1

A−a −M−a

instead of

lim
ρ→0

p(A) =
aA−a−1

A−a −M−a .

The difference at one point is insignificant to the probability, but when the likelihood

is computed, it depends on the value of the pdf at the specific data values. Thus, the

limit as ρ → 0 of the likelihood obtained from the Full model may not approach the

value of the likelihood obtained from the Instantaneous Seeding model.

3.1.2. Homogeneous Model. If we remove the dependence of the inception in-

tensity on the size of the primary tumor but still include the latency time delay, we
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would have an inception intensity of

λ (t) = qα

∫ min{t,V−T}

0

1

ρ
e−(t−s)/ρds = qα

 1− e−t/ρ, 0 ≤ t ≤ V − T

e(V−T−t)/ρ − e−t/ρ, t > V − T

We call the model arising in this case the “Homogeneous” model because the shed-

ding intensity is independent of the size of the primary tumor making the Poisson

process of metastasis shedding homogeneous. Because of the delay due to latency, the

intensity of inception is initially zero but rapidly climbs toward a constant level as

metastases that were delayed complete their latency times. After resection, the inten-

sity fades as the remaining metastases that were shed prior to resection complete their

latency times.

As was done in the Instantaneous Seeding case, we can develop the conditional size

distribution p(x) from λ(t) by computing ω(t) and setting p(x) = ω(W−T−ψ(x))ψ′(x),

but we omit the details because, in this case, we obtain the same result by simply taking

the pointwise limit of the Full model in (2.16) or (2.18) as σ → 0.

Case i) eγ1(W−V ) ≤ m (i.e. A ≤ m)

In this case

p (x) = (C5x)−1

[
1−

( x

eγ0Q+γ1R

) 1
γ0ρ

]
,m ≤ x ≤ eγ0Q+γ1R

where

C5 = γ0Q+ γ1R− logm+ γ0ρ

[( m

eγ0Q+γ1R

) 1
γ0ρ − 1

]
in native parameters. In simplifying parameters, this is

(3.5) p (x) = (C5x)−1

[
1−

( x
M

)b0]
,m ≤ x ≤M

where

C5 = log
M

m
+

1

b0

[(m
M

)b0
− 1

]
.
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Case ii) eγ1(W−V ) > m (i.e. A > m)

In native parameters we have

p (x) =

 (C6x)−1 γ0

γ1

[
1−

(
e−γ0Q

) 1
γ0ρ

] (
x

eγ1R

) 1
γ1ρ , m ≤ x < eγ1R

(C6x)−1
[
1−

(
x

eγ0Q+γ1R

) 1
γ0ρ

]
, eγ1R ≤ x ≤ eγ0Q+γ1R

where

C6 = γ0Q− γ0ρ
(

1− e−
Q
ρ

)( m

eγ1R

) 1
γ1ρ .

In simplifying parameters, this is

(3.6) p (x) =


(C6x)−1 b1

b0

[
1−

(
A
M

)b0] ( x
A

)b1 , m ≤ x < A

(C6x)−1
[
1−

(
x
M

)b0] , A ≤ x ≤M

where

C6 = log
M

A
− 1

b0

[
1−

(
A

M

)b0](m
A

)b1
.

3.1.3. Heavy-Seeding/Long-Latency Model. When fitting our model to data,

we occasionally observe that the best fit occurs as ρ → ∞. Because ρ is the mean

latency time, this would indicate that metastases are seeded but remain dormant.

However, if we start from the inception intensity of the Full model and compute the

limit as ρ→∞, we have

lim
ρ→∞

λ (t) = lim
ρ→∞

qα

ρθβ + 1

 eθβt − e−t/ρ, 0 ≤ t ≤ V − T

eθβ(V−T )+(1/ρ)(V−T−t) − e−t/ρ, t > V − T

=
qα

∞+ 1

 eθβt − 1, 0 ≤ t ≤ V − T

eθβ(V−T ) − 1, t > V − T
= 0,

which is as we would suspect because if metastases, on average, spend an infinite

amount of time in dormancy, we are not likely see many metastases develop. In order

to compensate for the drop in inception intensity due to increasing the latency time,
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we could increase qα in such a way that the ratio qα/ρ approaches a constant, c > 0.

Then we obtain the intensity function

λ (t) =
c

θβ

 eθβt − 1, 0 ≤ t ≤ V − T

eθβ(V−T ) − 1, t > V − T
.

We call this the ‘Heavy-Seeding/Long-Latency” model. One biological interpreta-

tion of the intensity function in this limiting case is that as the primary tumor grows,

it sends out more and more metastases. Some may begin to develop but most remain

dormant and thus a large pool of dormant metastases develops. Once the primary

tumor is removed, this large pool of potential metastases remains. Assuming that the

number of metastases that transition from dormancy to active development is very

small in comparison to the size of the pool of dormant metastases, the intensity would

remain approximately constant, even after the primary tumor was removed. This is

consistent with large qα (very many metastases shed from the primary) and large ρ

(most metastases remain dormant and do not develop.)

Again, we coud develop the conditional size distribution p(x) from λ(t) by comput-

ing ω(t) and setting p(x) = ω(W − T − ψ(x))ψ′(x), but we omit the details because,

in this case, we obtain the same result by simply taking the pointwise limit of the Full

model in (2.16) or (2.18) as ρ→∞.

Case i) eγ1(W−V ) ≤ m

In native parameters we have

(3.7) p (x) = (C7x)−1

[(
eγ0Q+γ1R

x

) σ
γ0

− 1

]
, m ≤ x ≤ eγ0Q+γ1R

where

C7 =
γ0

σ

[(
eγ0Q+γ1R

m

) σ
γ0

− 1

]
+ logm− γ0Q− γ1R

which is

p (x) = (C7x)−1

[(
M

x

)a
− 1

]
, m ≤ x ≤M
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where

C7 =
1

a

[(
M

m

)a
− 1

]
+ log

(m
M

)
in simplifying parameters.

Case ii) eγ1(W−V ) > m

In native parameters we have

(3.8) p (x) =


γ0

γ1
(C8x)−1 (eσQ − 1

)
m ≤ x < eγ1R

(C8x)−1

[(
eγ0Q+γ1R

x

) σ
γ0 − 1

]
eγ1R ≤ x ≤ eγ0Q+γ1R

where

C8 = −γ0Q+
(
eσQ − 1

)(γ0

σ
+ γ0R−

γ0

γ1

logm

)
which is

p (x) =


b1
b0

(C8x)−1 [(M
A

)a − 1
]

m ≤ x < A

(C8x)−1 [(M
x

)a − 1
]

A ≤ x ≤M

where

C8 = − log

(
M

A

)
+

[(
M

A

)a
− 1

] [
1

a
+
b1

b0

log

(
A

m

)]
in simplifying parameters.

Notice that in this second case b1 and b0 always appear together as the fraction b1
b0

and thus b1
b0

= γ0

γ1
is a single parameter.

3.2. Submodels arising from alterations to the growth model

While Q, σ and ρ control the seeding and inception of metastases, the parameters

γ0 and γ1 control the growth of those metastases after inception. We find that two

cases are of particular interest when using the method of maximum likelihood to find

parameters from data: the case when γ0 → 0 and the case when γ0 →∞ while σ
γ0

and

1
ργ0

are held constant.

3.2.1. Complete Suppression by the Primary Tumor. The parameter γ0

controls the growth of metastases prior to resection of the primary tumor. If we allow
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γ0 to approach 0 in the Full model so that the growth rate is essentially zero, then

metastases are shed and complete their latency, but are unable to grow further and

remain as either a collection of very few isolated cells or perhaps as small clumps of cells

at the threshold of vascularization until the primary tumor is removed. After resection,

all of the tumors that have lain dormant begin to grow at the same time, producing a

concentrated group of tumors at or near the maximum size, eγ1R. If eγ1R < m, then no

metastases will be observable and hence the pdf (and the likelihood) will be 0. On the

other hand, if eγ1R > m then growth post resection is sufficient to produce detectable

metastases from at least some of the metastases incepted after resection. If we factor

out γ0 from the normalizing constant, we can re-write the Full model as:

p (x) =


1
γ1

(
C̃2x

)−1 (
x

eγ1R

)1/(ργ1)
(
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

1
γ0

(
C̃2x

)−1
{[

e(γ0Q+γ1R)

x

] σ
γ0 −

[
x

e(γ0Q+γ1R)

] 1
ργ0

}
, eγ1R ≤ x ≤ eγ0Q+γ1R

where

C̃2 = ρ
(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

)1/(γ1ρ)
]

+
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
.

We see that the first component of p (for m ≤ x < eγ1R ) accounts for metastases

incepted after resection (conditional on the total number of metastases) while the

second component (for eγ1R ≤ x ≤ eγ0Q+γ1R ) accounts for metastases that were

incepted before resection. Thus the fraction of the total number of observed metastases

that were incepted before resection is

r =

∫ eγ1R+γ0Q

eγ1R

p (x) dx =

1
σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
ρ
(
eσQ − e−

Q
ρ

)(
1−

(
m
eγ1r

)1/(γ1ρ)
)

+ 1
σ

(eσQ − 1) + ρ
(
e−

Q
ρ − 1

)
which we note is independent of γ0. The growth rate γ1 appears in the denomina-

tor because it determines how many metastases incepted after resection will grow to

detectable size.
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As γ0 → 0, the Full model converges pointwise to

(3.9) p (x) =


1
γ1

(C9x)−1 ( x
eγ1R

)1/(ργ1)
(
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

∞, x = eγ1R

where

C9 = ρ
(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

)1/(γ1ρ)
]

+
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
.

If we use the maximum likelihood method with the Full model, then we see that

we will have infinite likelihood if we set eγ1R = xn and let γ0 → 0. But as γ0 → 0, the

fraction of tumors in the size range
[
eγ1R, eγ1R+γ0Q

]
remains the same even as the width

of the interval shrinks to zero, so it is more instructive to think of the distribution of

the sizes of detectable metastases as a combination of a continuous component for

the metastases incepted after resection and a discrete component for the metastases

incepted prior to resection:

(3.10)

p (x) = 1
γ1

(C9x)−1 ( x
eγ1R

)1/(ργ1)
(
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

and

Pr
(
x = eγ1R

)
= (C9)−1

[
1
σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)]
In this case, the cdf would be smoothly increasing in x until it jumps up to 1 at

x = eγ1R. In (3.10), if we set v = Pr
(
x = eγ1R

)
then we can solve for C9 to obtain

C9 =
1

v

[
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)]
.

Equating this to the original expression for C9, we have

1

v

[
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)]
= ρ

(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

)1/(γ1ρ)
]

+
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
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which we rearrange to obtain

1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
=

v

1− v
ρ
(
eσQ − e−

Q
ρ

)(
1−

( m

eγ1R

)1/(γ1ρ)
)
.

This then leads to an alternative form of C9 as

C9 =
1

1− v
ρ
(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

)1/(γ1ρ)
]
.

When we substitute this expression for C9 into the continuous part of the pdf we obtain

p (x) =
x−1

(
x

eγ1R

)1/(γ1ρ)
(
eσQ − e−

Q
ρ

)
γ1

(
1

1−v

)
ρ
(
eσQ − e−

Q
ρ

) [
1−

(
m
eγ1R

)1/(γ1ρ)
]

=
(1− v)x−1

(
x

eγ1R

)1/(ργ1)

γ1ρ
[
1−

(
m
eγ1R

)1/(γ1ρ)
] , m ≤ x < eγ1R.

Thus the CSPT model can be written as

(3.11) p (x) =
(1− v)x−1

(
x

eγ1R

)1/(γ1ρ)

γ1ρ
[
1−

(
m
eγ1R

)1/(γ1ρ)
] , m ≤ x < eγ1R,

Pr
(
x = eγ1R

)
= v

where

(3.12) v =

1
σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
ρ
(
eσQ − e−

Q
ρ

) [
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ 1
σ

(eσQ − 1) + ρ
(
e−

Q
ρ − 1

) .
In Appendix C, we show that given γ1, ρ, and v, (3.12) can be solved for Q in terms

of σ and has a unique positive solution in terms of σ if and only if

0 ≤ σ <
1− v

ρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] .
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When it exists, that solution satisfies

(3.13)
eσQ − 1

e−
Q
ρ − 1

=
σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ v − 1
.

The five-parameter Full model has degenerated into a three-parameter mixed model

involving γ1, ρ, and v, where v can be used to specify a relationship between σ,Q, γ1

and ρ. We note that v represents the proportion of observed tumors that were incepted

prior to resection; once values of γ1 and ρ are determined, if v is high, it may be that

disease onset occurred very early (large Q) or that metastasis shedding was particularly

intense (large σ) or some combination of the two.

We can write this model in simplifying parameters A, b1, and v as

p (x) =
b1 (1− v)x−1

(
x
A

)b1
1−

(
m
A

)b1 ,m ≤ x < A, and Pr (x = A) = v

Once b1, v, and A are found, then ρ and γ1 can be recovered and the relationship

between σ and Q is specified by (3.13).

3.2.2. Instantaneous Infinite Shedding and Metastasis Growth. We also

find that the likelihood becomes unbounded when we let ρ approach 0 while letting

σ, γ0 → ∞. In this case, we have near instantaneous seeding with very large primary

growth rate and very large metastasis growth rate prior to resection. A large value

of σ means that the largest number of metastases (relative to the total) is shed just

before resection and with ρ approaching 0, most metastases complete their latencies

either just before or just after resection. Because the metastasis growth rate is so

large prior to resection, metastases that were seeded before resection grow very large,

whereas metastases that complete their latency after resection grow at a much slower

rate. This concentration of metastases near the size eγ1R is what causes the likelihood

to be unbounded. Before finding the limiting pdf in the case A = eγ1R≥m, we adjust

the inequality forx in the Full model so that the value of p(x) at x = eγ1R is defined
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by the left-hand equation:

p (x) =


1
γ1

(C2x)−1 ( x
eγ1R

)1/(ργ1)
(
eσQ − e−

Q
ρ

)
, m ≤ x ≤ eγ1R

1
γ0

(C2x)−1

[(
e(γ0Q+γ1R)

x

) σ
γ0 −

(
x

e(γ0Q+γ1R)

) 1
ργ0

]
, eγ1R < x ≤ eγ0Q+γ1R

Next, we make the substitutions σ = aγ0 and ρ = 1/(b0γ0)

p (x) =

(γ1x)−1
(

x

eγ1R

)b0γ0/γ1(eaγ0Q−e−b0γ0Q)
1

b0γ0
(eaγ0Q−e−b0γ0Q)

(
1−
(

m

eγ1R

)b0γ0/γ1
)

+ 1
aγ0

(eaγ0Q−1)+ 1
b0γ0

(e−b0γ0Q−1)
, m ≤ x ≤ eγ1R

(γ0x)−1

(
e(γ0Q+γ1R)

x

)a
−
(

x

e(γ0Q+γ1R)

)b0γ0/γ1

1
b0γ0

(eaγ0Q−e−b0γ0Q)
(

1−
(

m

eγ1R

)b0γ0/γ1
)

+ 1
aγ0

(eaγ0Q−1)+ 1
b0γ0

(e−b0γ0Q−1)
, eγ1R < x ≤ eγ0Q+γ1R

Next we consider pointwise convergence of the model by first simplifying

p (x) =

(γ1x)−1γ0

(
x

eγ1R

)b0γ0/γ1(1−e−aγ0Q−b0γ0Q)
1
b0

(1−e−aγ0Q−b0γ0Q)
(

1−
(

m

eγ1R

)b0γ0/γ1
)

+ 1
a(1−e−aγ0Q)+ 1

b0
(e−aγ0Q−b0γ0Q−e−aγ0Q)

, m ≤ x < eγ1R

(γ1x)−1γ0(1−e−aγ0Q−b0γ0Q)
1
b0

(1−e−aγ0Q−b0γ0Q)
(

1−
(

m

eγ1R

)b0γ0/γ1
)

+ 1
a(1−e−aγ0Q)+ 1

b0
(e−aγ0Q−b0γ0Q−e−aγ0Q)

, x = eγ1R

(x)−1
(
eγ1R

x

)a
−e−γ0Qa

(
x

e(γ0Q+γ1R)

)b0γ0/γ1

1
b0

(1−e−aγ0Q−b0γ0Q)
(

1−
(

m

eγ1R

)b0γ0/γ1
)

+ 1
a(1−e−aγ0Q)+ 1

b0
(e−aγ0Q−b0γ0Q−e−aγ0Q)

, eγ1R < x ≤ eγ0Q+γ1R

0, x = eγ0Q+γ1R

and then taking the limit as γ0 →∞ (assuming that a, γ1, and b0 are fixed):

(3.14) p (x) =


0, m ≤ x < eγ1R

∞, x = eγ1R

x−1
ab0
(
eγ1R

x

)a
a+b0

, eγ1R < x <∞

.
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If we write this in simplifying parameters, we have

p (x) =


0 m ≤ x < A

∞ x = A

b0
a+b0

a
A−a

x−a−1 A < x <∞

We recognize this, aside from the infinite value at x = A and the attendant change in

the normalizing constant, as the Instantaneous Seeding model (3.1) with M →∞.

Note that this distribution is improper in that∫ ∞
A

p(x)dx =
b0

a+ b0

< 1.

Although the pdf is converging pointwise to zero for x between m and eγ1R and to

infinity for x = eγ1R, we can show that the (conditional) probability of an observable

metastasis between m and eγ1R approaches a constant value. We begin by noting that

in the Full model, the fraction of the total number of observed metastases that were

incepted after resection is

∫ eγ1R

m

p (x) dx =
ρ
(
eσQ − e−

Q
ρ

)(
1−

(
m
eγ1r

)1/(γ1ρ)
)

ρ
(
eσQ − e−

Q
ρ

)(
1−

(
m
eγ1r

)1/(γ1ρ)
)

+ 1
σ

(eσQ − 1) + ρ
(
e−

Q
ρ − 1

) .
We again let σ = aγ0 and let ρ = 1/(b0γ0) and consider the limit as γ0 →∞:

lim
γ0→∞

∫ eγ1R

m

p(x)dx =

lim
γ0→∞

(
1− e−aγ0Q−b0γ0Q

) (
1−

(
m
eγ1r

)b0γ0/γ1
)

(1− e−aγ0Q−b0γ0Q)
(

1−
(
m
eγ1r

)b0γ0/γ1
)

+ b0
a

(1− e−aγ0Q) + (e−aγ0Q−b0γ0Q − e−aγ0Q)

=
a

a+ b0

Because as γ0 →∞, the fraction of tumors in the size range
[
m, eγ1R

]
remains the same

even as the pdf converges pointwise to zero, we can think of this pdf as a combination

of a continuous pdf for the metastases incepted before resection and a discrete pdf for
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the metastases incepted after resection.

(3.15)

p (x) = x−1 ab0
a+b0

(
eγ1R

x

)a
, eγ1R < x <∞

and

Pr
(
x = eγ1R

)
= a

a+b0
.

In simplifying parameters this is

p (x) = x−1 ab0
a+b0

(
A
x

)a
, A < x <∞

and

Pr (x = A) = a
a+b0

.

In this case, the cdf would be zero up until x = A at which point it would jump up to

a
a+b0

and then increase to 1 as x→∞.

Finally, in the case when A < m, i.e. γ1 ≤ log(m)/R, we obtain

(3.16) p (x) = amax−1−a,m ≤ x <∞

We recognize this as the Instantaneous Seeding model (3.1) with M → ∞ and this

means that in the case when γ1 ≤ log(m)/R, the IISMG model can do no better at

fitting the data than the Instantaneous Seeding model.
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CHAPTER 4

Data Description and Conversion

In order to estimate the parameters of our model, we obtained data from two

sources. The first source was a database of cancer patients diagnosed and treated at

the Memorial Sloan-Kettering Cancer Center (MSKCC) in New York. The second

source was autopsy data collected and reported by the Australian pathologist J.R.S.

Douglas [9].

4.1. MSKCC data and conversion

Most of the necessary information reported in the MSKCC data is easily encoded

for use in our model. For example, the age at diagnosis, the volume of the primary

tumor at diagnosis, the age at the time of primary tumor resection, and the age at

which metastases were surveyed are the observables U, S, V , and W , respectively. The

data collected from patients also includes additional information such as the type of

surgery performed, any adjuvant radiation-, chemo-, or hormonal therapies given after

diagnosis, and the site, number, and volumes of metastases. These clinical variables

can be used to determine whether a particular subject will be compatible with the

assumptions of our model. Compatible subjects would have undergone surgery to re-

move a primary tumor of known size and at a later time, would have had a careful

survey within at least one organ or tissue that discovered and measured a large num-

ber of metastases. Ideally, there would have been no adjuvant therapy after tumor

excision, or failing that, no significant change in therapy between the time of primary

tumor removal and the later survey of metastases. The most critical element of data

collection is the survey of metastasis sizes which, in the case of the MSKCC data,
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was accomplished by a painstaking analysis of PET/CT scans supervised by a nuclear

medicine specialist.

The metastasis data is reported in voxels and must be converted to a volume

measurement. To be clearly identified on the scan, a tumor must have a volume

of at least 0.5 cm3. For metastases meeting this condition, the precision in volume

determination is one voxel which represents a volume of 0.065 cm3. Assuming that a

cancerous cell has a volume of 10−9 cm3, a typical value for solid tumors [21], then a

detectable metastasis would contain at least 5× 108 cells.

4.2. Autopsy data and conversion

Douglas obtained metastasis sizes post-mortem by hardening affected organs in

formalin and then slicing them into sections of uniform thickness, l. The thickness was

constant for a particular organ, but varied from organ to organ with l always between 5

mm and 7 mm. Slicing through a metastasis revealed a circular profile whose diameter

could then be measured. Because the hardened organs were not completely opaque,

Douglas was able to identify all sections in which a particular tumor appeared (whether

one or many) and recorded the largest diameter measured in any one such section.

All measurements were rounded to the nearest millimeter, so that only tumors with

diameters that exceed the threshold profile diameter of dm = 0.5 mm were reported.

We assume (as Douglas did) that the metastases are spherical. In order to use this

data in our model, we must convert diameters of circular profiles to actual spherical

diameters which can then be used to represent metastasis volume.

Notice that the spherical diameter can be no less than the diameter of the observed

circular profile. But if the center of the sphere does not lie in the sectioning plane,

then the circular profile will have a diameter that is less than the spherical diameter.

For slices of thickness l, and for a given metastasis of spherical diameter, y, with center

located at a distance k from the plane of the section in which it appears, the profile

diameter, z, will be given by z =
√
y2 − 4k2 (see Figure 1). Because Douglas reported
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Figure 1. Relationship between spherical diameter, y, and profile di-
ameter, z.

the largest profile diameter, we have 0 ≤ k ≤ l/2 (otherwise the center will be closer to

a different section and z would have been reported from that closer section.) Note that

for a given spherical diameter, y, we will observe the smallest profile diameter, z, when

the distance from the nearest plane of section to the center of the sphere is k = l/2.

This gives a minimum value for z of zmin =
√
y2 − l2 or, alternatively, when a profile

of diameter z is observed, the maximum value of y is given by ymax =
√
z2 + l2. Thus,

for a given z, the spherical diameter, y, is bounded by z ≤ y ≤
√
z2 + l2. Rewriting

this inequality in terms of the error gives

(4.1) 0 ≤ y − z ≤
√
z2 + l2 − z =

l√
(z/l)2 + 1 + z/l

so that the larger z/l is, the less error can be incurred by estimating y with z.

As an example, Douglas’ protocol 10 gives hepatic metastasis sizes for a 65-year-old

male who died from an oat cell carcinoma of the lung that had metastasized to the
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Figure 2. Graph of maximum error ∆ =
√
z2 + l2 − z with l = 7 mm.

liver. This protocol is of particular interest because it is the only one for which Douglas

reports the size of the primary tumor which was in situ at the time of death with a

diameter of 105 mm. Douglas microscopically determined that the mean cell diameter

was 0.009 mm. The liver section width used was 7 mm. Figure 2 shows the maximum

error in mm given by formula 4.1 as a function of z when l = 7 mm. Given an observed

diameter of a metastasis cross-section, the range of possible errors in actual diameter

determination is about 7 mm wide for observed diameters near 0 mm and about 1 mm

wide for the largest observed diameter in Protocol 10, which was 25 mm.

A further complication arises when we consider that metastases of small but ap-

preciable size may lurk between the sections without being detected. It is clear that if

the actual diameter, y, of a spherical tumor is greater than the section width, l, then

a circular profile of the tumor will certainly be present on the surface of at least one

section, but it will not be observed unless that circular profile has diameter greater

than or equal to the minimum observable diameter, dm. If a tumor is to be guaranteed

of detection, then using the relationship z ≥
√
y2 − l2, we must have dm ≤

√
y2 − l2

which can be re-written as y ≥
√
d2
m + l2. Thus metastases of spherical diameter

greater than
√
d2
m + l2 will certainly be detected, metastases with spherical diameters
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between dm and
√
d2
m + l2 may or may not be detected, and metastases with y < dm

will go undetected.

In searching for a way to utilize Douglas’ data, two lines of attack present them-

selves:

1. Obtain the conditional distribution of y given z and use the expected value of y

given z to transform the data for direct use in our model. This may give a first esti-

mate of model parameters, but will not account for metastases of spherical diameter

between dm and
√
d2
m + l2 that may escape detection because of their placement with

regard to the slices. A more refined method is to

2. Compound the model-based distribution of the true secondary tumor diameters, y,

with the conditional distribution of z given y to obtain the distribution of the tumor

diameters z observed on autopsy slices directly and estimate model parameters from

this compounded distribution.

We will refer to these methods as the Expected Diameter Method and the True

Diameter Method, respectively. We now develop the mathematical formulae necessary

for both approaches.

4.3. Full Model and Submodels written in terms of diameters

Regardless of which approach we take, we will need to convert the pdfs for the full

model and our submodels from volumes, X, to diameters, Y , by using the transforma-

tion X = πY 3

6
. In each of the following cases, we apply this transformation and use the

fact that dX
dY

= πY 2

2
with the density transformation principle (see, for example [42])

to obtain the pdf of observable diameters. In the following, dm = 3

√
6m
π

is the smallest

observable diameter, dM = 3

√
6M
π

is the largest possible diameter, and dA = 3

√
6A
π

is the

diameter that would be attained by a metastasis whose inception occured at the time

of primary tumor resection.

4.3.1. Density fY for the Full Model. Using (2.21), we have, for the case when

dA ≤ dm,
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(4.2) fY (y) =
(
C1
y

3

)−1
[(

dM
y

)3a

−
(
y

dM

)3b0
]
, dm ≤ y ≤ dM ,

where

C1 =
1

a

[(
dM
dm

)3a

− 1

]
− 1

b0

[
1−

(
dm
dM

)3b0
]

For the case when dA > dm , we transform (2.22) to obtain

(4.3) fY (y) =


b1
b0

(
C2

y
3

)−1
[(

dM
dA

)3a

−
(
dA
dM

)3b0
](

y
dA

)3b1
, dm ≤ y < dA(

C2
y
3

)−1
[(

dM
y

)3a

−
(

y
dM

)3b0
]
, dA ≤ y ≤ dM .

The constant C2 is given by

C2 =
1

b0

[(
dM
dA

)3a

−
(
dA
dM

)3b0
][

1−
(
dm
dA

)3b1
]

+
1

a

[(
dM
dA

)3a

− 1

]
− 1

b0

[
1−

(
dA
dM

)3b0
]
.

4.3.2. Density fY for the Instantaneous Seeding Model. Converting the

equations for the Instantaneous Seeding model in (3.1) and (3.3) gives:

(1) If dA ≤ dm,

fY (y) = (C3y)−1

(
dM
y

)3a

, dm ≤ y ≤ dM

where

C3 =
1

3a

[(
dM
dm

)3a

− 1

]
.

(2) If dA > dm,

fY (y) = (C4y)−1

(
dM
y

)3a

, dA ≤ y ≤ dM

where

C4 =
1

3a

[(
dM
dA

)3a

− 1

]
.
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4.3.3. Density fY for the Homogeneous Model. Converting the equations

for the Homogeneous Model in (3.5) and (3.6) gives:

(1) If dA ≤ dm,

(4.4) fY (y) = (C5y)−1

[
1−

(
y

dM

)3b0
]
, dm ≤ y ≤ dM

where

C5 = log
dm
dM
− 1

3b0

[
1−

(
dm
dM

)3b0
]
.

(2) If dA > dm,

fY (y) =


b1
b0

(C6y)−1
[
1−

(
A
M

)3b0
] (

y
A

)3b1 , dm ≤ y < dA

(C6)−1
[
1−

(
y
M

)3b0
]
, dA ≤ y ≤ dM

where

C4 = log
dM
dA
− 1

3b0

[
1−

(
dA
dM

)3b0
](

dm
dA

)3b1

.

4.3.4. Density fY for the Heavy-Seeding/Long-Latency Model. Convert-

ing the equations for the Heavy-Seeding/Long-Latency model in (3.7) and (3.8), gives:

(1) If dA ≤ dm

fY (y) = (C7y)−1

[(
dM
y

)3a

− 1

]
, dm ≤ y ≤ dM ,

where

C7 =
1

3a

[(
dM
dm

)3a

− 1

]
+ log

dm
dM

.

(2) If dA > dm,

fY (y) =


b1
b0

(C8y)−1

[(
dM
dA

)3a

− 1

]
, dm ≤ y < dA

(C8y)−1

[(
dM
y

)3a

− 1

]
, dA ≤ y ≤ dM

,

53



where

C8 =

(
b1

b0

log
dA
dm

+
1

3a

)[(
dM
dA

)3a

− 1

]
+ log

dA
dM

.

4.3.5. Density fY for the Complete Suppression by Primary Tumor Model.

Converting the expression for the Complete Suppression by Primary Tumor Model in

(3.11) gives:

(4.5)

fY (y) =
3b1(1−v)y−1

(
y
dA

)3b1

1−
(
dm
dA

)3b1
, dm ≤ y < dA,

and

Pr (y = dA) = v

4.3.6. Density fY for the Instantaneous Infinite Shedding and Metastasis

Growth Model. Converting the expressions for the Instantaneous Infinite Shedding

and Metastasis Growth Model in (3.15) and (3.16) gives:

(1) If dA < dm then

fY (y) = 3ad3a
m y
−1−3a, dm ≤ y <∞

(2) If dA ≥ dm then

fY (y) = 3y−1 ab0
a+b0

(
dA
y

)3a

, dA < y <∞

and

Pr (y = dA) = a
a+b0

4.4. Expected diameter method

Our first approach is to obtain the conditional distribution of actual diameter, y,

given observed diameter, z, and use the expected value of y given z to transform the

data for direct use in our model. For a given metastasis within an organ, we call the cut

in which the metastasis’ maximum profile diameter is observed the maximal cut and

denote the distance from the maximal cut to the tumor’s center by K. The maximum

value of K is l/2 (otherwise a different cut would be closer to the center and therefore

the maximal cut.) We assume that K is a uniformly distributed random variable,
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i.e. K ∼ U [0, l/2]. As was seen in Figure 1 above, the actual diameter is given by

y =
√
z2 + 4K2 , so that the expected value of y given z is E(y|z) = 2

l

∫ l/2
0

√
z2 + 4k2dk.

Making the substitution u = 2k yields the expression

(4.6)
E(y|z) = 1

l

∫ l
0

√
z2 + u2du = 1

2

√
z2 + l2 + z2(log(l+

√
z2+l2)−log(

√
z2))

2l

= 1
2

√
z2 + l2 + z2

2l
log( l

z
+
√

1 + ( l
z
)2).

Given that a tumor is observed with cross-sectional diameter z, we can then compute

E(y|z) as a best estimate of the true diameter y and use this estimate as though it

were the true diameter.

4.4.1. The Distribution, fZ, of Circular Profile Diameter, Z. Consider

Pr(Z ≥ z|Y = y), the probability that a tumor of spherical diameter y will be detected

to have a profile diameter of z or greater for a given z ≤ dM . First, if y < z, Pr(Z ≥

z|Y = y) = 0 because it would be impossible for a metastasis’ circular profile to

have a diameter greater than its spherical diameter. On the other hand, if y > dM ,

then Pr(Z ≥ z|Y = y) = 0 because it would be impossible for y to be greater than

the maximum diameter, dM . Next, if z ≤ y < min
{√

z2 + l2, dM
}
, then the circular

profile may or may not have a diameter greater than z depending on whether or not

the distance, K, from the center of the metastasis to the maximal cut is small or large.

Specifically, because the circular profile diameter is Z =
√
y2 − 4K2, we will have

Z ≥ z if and only if K ≤ 1
2

√
y2 − z2. Because K has a uniform distribution on the

interval [0, l/2], the probability that K ≤ 1
2

√
y2 − z2 is 1

2

√
y2 − z2 · 2

l
and therefore

Pr (Z ≥ z|Y = y) = 1
l

√
y2 − z2.

Finally, if
√
z2 + l2 ≤ y < min

{
dM ,
√
z2 + l2

}
, then no matter where the maximal

cut occurs, the profile diameter will be greater than z.
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Thus Pr (Z ≥ z|Y = y) is given by

Pr (Z ≥ z|Y = y) =



0 y < z

1
l

√
y2 − z2 z ≤ y < min

{√
z2 + l2, dM

}
1 min

{√
z2 + l2, dM

}
≤ y ≤ dM

0 y > dM .

We can compound Pr (Z ≥ z|Y = y) with the pdf of spherical diameters fY (y) to

compute the probability of observing a profile of diameter z or larger by using

(4.7)
Pr (Z ≥ z) = 1

Cd

∫ dM
z

Pr (Z ≥ z|Y = y) fY (y) dy

= 1
Cd

∫ min{√z2+l2,dM}
max{z,dm}

1
l

√
y2 − z2fY (y) dy + 1

Cd

∫ dM
min{√z2+l2,dM} fY (y) dy

where the constant Cd is found from

Cd =

∫ dM

dm

Pr (Z ≥ z|Y = y) fY (y) dy

and represents the fraction of metastases that are actually detected. Because the cdf

of profile diameters is F (z) = Pr(Z < z) = 1 − Pr(Z ≥ z), we can find the pdf of

profile diameters, fZ(z), by computing the derivative with respect to z of −Pr(Z ≥ z).

In doing so, we use the formula

d

du

∫ β(u)

α(u)

f(x, u)dx = f(β(u), u)
dβ

du
− f(α(u), u)

dα

du
+

∫ β(u)

α(u)

∂

∂u
f(x, u)dx.

4.4.2. Likelihood Estimation of Parameters: True Diameter without

Rounding. In order to use the Douglas data to estimate parameters, we can maxi-

mize the likelihood function
∏n

i=1 fZ(zi) where zi is the ith observed diameter. We call

this the True Diameter without Rounding method.

4.4.3. Likelihood Estimation of Parameters: True Diameter with Round-

ing. The previous computation does not account for the fact that the circular profiles
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of the tumors were rounded to the nearest 1 mm. One consequence of the round-

ing is that the smallest observable tumor diameter would be dm = 0.5 mm. Another

consequence of the rounding is that for metastases with diameters near 1 mm (that

are numerous in Protocol 10), the amount of rounding with respect to the actual

measurement could have been quite large. Because each recorded profile diameter zi

corresponded to an actual profile diameter between zi − 0.5 mm and zi + 0.5 mm, we

can compensate for rounding by using

n∏
i=1

Pr (zi − 0.5 ≤ Z ≤ zi + 0.5)

which is the same as

(4.8)
n∏
i=1

[Pr (Z > zi − 0.5)− Pr (Z > zi + 0.5)]

as our likelihood function. We call this the True Diameter with Rounding method.

4.5. Computing FZ and fZ for the True Diameter Methods

We now give more detailed versions of the cdf FZ and pdf fZ for the Full model

and the submodels that we have discussed.

4.5.1. Cdf FZ and Pdf fZ, dA < dm, for the Full, Homogeneous, and

Heavy-Seeding/Long-Latency Models. For the Full, Homogeneous, and Heavy-

Seeding/Long-Latency models, when dA < dm, the distribution of metastasis diame-

ters, fY (y) is a continuous function which we denote by fY S(y) for “small dA.” We use

(4.7) to write Pr(Z ≥ z) and then compute fZ(z). We have two cases to consider:

Case i) dA < dm < dM <
√
d2
m + l2

In this case, we must have dm ≤ z ≤ dM ≤
√
d2
m + l2 In view of (4.7), we have

Pr (Z ≥ z) =
1

Cd

∫ dM

z

1

l

√
y2 − z2fY S (y) dy
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and differentiating −Pr(Z ≥ z) with respect to z gives

fZ (z) =
1

Cd

∫ dM

z

z

l
√
y2 − z2

fY S (y) dy

Case ii) dA < dm <
√
d2
m + l2 ≤ dM

In this case, z can lie within one of two regions.

Region i) dm ≤ z ≤
√
d2
M − l2 < dM

Pr (Z ≥ z) =
1

Cd

∫ √z2+l2

z

1

l

√
y2 − z2fY S (y) dy +

1

Cd

∫ dM

√
z2+l2

fY S (y) dy

fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY S (y) dy

Region ii) dm ≤
√
d2
M − l2 < z ≤ dM

Pr (Z ≥ z) =
1

Cd

∫ dM

z

1

l

√
y2 − z2fY S (y) dy

fZ (z) =
1

Cd

∫ dM

z

1

l

z√
y2 − z2

fY S (y) dy

We can combine the above cases into the single expression

fZ (z) =
1

Cd

∫ min{√z2+l2,dM}

z

z

l
√
y2 − z2

fY S (y) dy, dm ≤ z ≤ dM

and 0 otherwise.

4.5.2. Cdf FZ and Pdf fZ, dA ≥ dm, for the Full, Homogeneous, and

Heavy-Seeding/Long-Latency Models. For the Full, Homogeneous, and Heavy-

Seeding/Long-Latency models, when dA ≥ dm, the distribution of metastasis diame-

ters, fY (y), is a piecewise-defined function with a possible discontinuity at y = dA. We

use fY L(y) to denote the values of fY (y) for y on the “left side” of dA and fY R(y) to

denote the values of fY (y) for y on the “right side” of dA. With this notation, we can

use (4.7) to write Pr(Z ≥ z). Based on the proximity of dm, dA, and dM as measured

by the slice width, l, we have five cases to consider:
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Case i) dm ≤ dA ≤ dM ≤
√
d2
m + l2 ≤

√
d2
A + l2

Case ii) dm ≤ dA ≤
√
d2
m + l2 ≤ dM ≤

√
d2
A + l2

Case iii)dm ≤ dA ≤
√
d2
m + l2 ≤

√
d2
A + l2 ≤ dM

Case iv) dm ≤
√
d2
m + l2 ≤ dA ≤ dM ≤

√
d2
A + l2

Case v) dm ≤
√
d2
m + l2 ≤ dA ≤

√
d2
A + l2 ≤ dM

Within each case, we have up to four regions in which z can lie. We now delineate

Pr(Z ≥ z) for z within the regions created in each case and find fZ(z) by differentiat-

ing −Pr(Z ≥ z) with respect to z.

Case i) dm ≤ dA ≤ dM ≤
√
d2
m + l2 ≤

√
d2
A + l2

Region i) dm ≤ z < dA ≤ dM ≤
√
d2
m + l2 ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ dM

dA

√
y2 − z2

l
fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ dM

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region ii) dm ≤ dA ≤ z ≤ dM ≤

√
d2
m + l2 ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

∫ dM

z

√
y2 − z2

l
fY R (y) dy

fZ (z) =
1

Cd

∫ dM

z

z

l
√
y2 − z

fY R (y) dy

Combining the results above, we have

fZ (z) =


1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ dM
dA

z

l
√
y2−z2

fY R (y) dy

]
dm ≤ z < dA

1
Cd

∫ dM
z

z

l
√
y2−z

fY R (y) dy dA ≤ z ≤ dM

.

We choose Cd so that Pr(Z ≥ dm) = 1, so

Cd =

∫ dA

dm

√
y2 − d2

m

l
fY L (y) dy +

∫ dM

dA

√
y2 − d2

m

l
fY R (y) dy.
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Case ii) dm ≤ dA ≤
√
d2
m + l2 ≤ dM ≤

√
d2
A + l2

Region i) dm ≤ z <
√
d2
M − l2 < dA ≤

√
d2
m + l2 ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =

1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ √z2+l2

dA

√
y2 − z2

l
fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY R (y) dy

]

Region ii) dm ≤
√
d2
M − l2 ≤ z < dA ≤

√
d2
m + l2 ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ dM

dA

√
y2 − z2

l
fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ dM

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region iii) dm ≤ dA ≤ z ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

∫ dM

z

√
y2 − z2

l
fY R (y) dy

fZ (z) =
1

Cd

∫ dM

z

z

l
√
y2 − z2

fY R (y) dy

Combining the results above, we have

fZ (z) =



1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ √z2+l2

dA

z

l
√
y2−z2

fY R (y) dy

]
dm ≤ z <

√
d2
M − l2

1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ dM
dA

z

l
√
y2−z2

fY R (y) dy

] √
d2
M − l2 ≤ z < dA

1
Cd

∫ dM
z

z

l
√
y2−z2

fY R (y) dy dA ≤ z ≤ dM
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We choose Cd so that Pr(Z ≥ dm) = 1, and therefore in this case,

Cd =

∫ dA

dm

√
y2 − d2

m

l
fY L (y) dy +

∫ √d2
m+l2

dA

√
y2 − d2

m

l
fY R (y) dy +

∫ dM

√
d2
m+l2

fY R (y) dy.

Case iii) dm ≤ dA ≤
√
d2
m + l2 ≤

√
d2
A + l2 ≤ dM

Region i) dm ≤ z < dA ≤
√
d2
m + l2 ≤

√
d2
A + l2 ≤ dM

Pr (Z ≥ z) =

1

Cd

[∫ dA

z

1

l

√
y2 − z2fY L (y) dy +

∫ √z2+l2

dA

1

l

√
y2 − z2fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region ii) dm ≤ dA ≤ z <

√
z2 + l2 ≤ dM

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

1

l

√
y2 − z2fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY R (y) dy

Region iii) dm ≤ dA ≤ z ≤ dM ≤
√
z2 + l2

Pr (Z ≥ z) =
1

Cd

∫ dM

z

1

l

√
y2 − z2fY R (y) dy

fZ (z) =
1

Cd

∫ dM

z

z

l
√
y2 − z2

fY R (y) dy

Combining the results above we have

fZ (z) =


1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ √z2+l2

dA

z

l
√
y2−z2

fY R (y) dy

]
dm ≤ z < dA

1
Cd

∫ min{√z2+l2,dM}
z

z

l
√
y2−z2

fY R (y) dy dA ≤ z ≤ dM
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We choose Cd so that Pr(Z ≥ dm) = 1, and therefore

Cd =

∫ dA

dm

1

l

√
y2 − d2

mfY L (y) dy+

∫ √d2
m+l2

dA

1

l

√
y2 − d2

mfY R (y) dy+

∫ dM

√
d2
m+l2

fY R (y) dy.

Case iv) dm <
√
d2
m + l2 ≤ dA ≤ dM ≤

√
d2
A + l2

Region i) dm ≤ z <
√
d2
A − l2 ≤

√
d2
M − l2 ≤ dA ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY L (y) dy +

∫ dA

√
z2+l2

fY L (y) dy +

∫ dM

dA

fY R (y) dy

]

fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY L (y) dy

Region ii) dm ≤
√
d2
A − l2 ≤ z <

√
d2
M − l2 ≤ dA ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =

1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ √z2+l2

dA

√
y2 − z2

l
fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region iii) dm ≤

√
d2
A − l2 ≤

√
d2
M − l2 ≤ z < dA ≤ dM ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ dM

dA

√
y2 − z2

l
fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ dM

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region iv) dm ≤

√
d2
A − l2 ≤

√
d2
M − l2 ≤ dA ≤ z < dM ≤

√
d2
A + l2

Pr (Z ≥ z) =
1

Cd

∫ dM

z

√
y2 − z2

l
fY R (y) dy
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fZ (z) =
1

Cd

∫ dM

z

z

l
√
y2 − z2

fY R (y) dy

Combining the results above, we have

fZ (z) =



1
Cd

∫ √z2+l2

z
z

l
√
y2−z2

fY L (y) dy dm ≤ z <
√
d2
A − l2

1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ √z2+l2

dA

z

l
√
y2−z2

fY R (y) dy

] √
d2
A − l2 ≤ z <

√
d2
M − l2

1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ dM
dA

z

l
√
y2−z2

fY R (y) dy

] √
d2
M − l2 ≤ z < dA

1
Cd

∫ dM
z

z

l
√
y2−z2

fY R (y) dy dA ≤ z ≤ dM

We choose Cd so that Pr(Z ≥ dm) = 1, so

Cd =

∫ √d2
m+l2

dm

√
y2 − d2

m

l
fY L (y) dy +

∫ dA

√
d2
m+l2

fY L (y) dy +

∫ dM

dA

fY R (y) dy

Case v) dm ≤
√
d2
m + l2 ≤ dA ≤

√
d2
A + l2 ≤ dM

Region i) dm ≤ z <
√
d2
A − l2 ≤ dA ≤

√
d2
M − l2 ≤ dM

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY L (y) dy +

∫ dA

√
z2+l2

fY L (y) dy +

∫ dM

dA

fY R (y) dy

]

fZ (z) =
1

Cd

[∫ √z2+l2

z

z

l
√
y2 − z2

fY L (y) dy

]
Region ii) dm ≤

√
d2
A − l2 ≤ z < dA ≤

√
d2
M − l2 ≤ dM

Pr (Z ≥ z) =

1

Cd

[∫ dA

z

√
y2 − z2

l
fY L (y) dy +

∫ √z2+l2

dA

√
y2 − z2

l
fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY L (y) dy +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY R (y) dy

]
Region iii) dm ≤

√
d2
A − l2 ≤ dA ≤ z <

√
d2
M − l2 ≤ dM
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Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY R (y) dy +

∫ dM

√
z2+l2

fY R (y) dy

]

fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY R (y) dy

Region iv) dm ≤
√
d2
A − l2 ≤ dA ≤

√
d2
M − l2 ≤ z < dM

Pr (Z ≥ z) =
1

Cd

[∫ dM

z

√
y2 − z2

l
fY R (y) dy

]

fZ (z) =
1

Cd

[∫ dM

z

z

l
√
y2 − z2

fY R (y) dy

]
Combining the results above, we have

fZ (z) =



1
Cd

[∫ √z2+l2

z
z

l
√
y2−z2

fY L (y) dy

]
dm ≤ z <

√
d2
A − l2

1
Cd

[∫ dA
z

z

l
√
y2−z2

fY L (y) dy +
∫ √z2+l2

dA

z

l
√
y2−z2

fY R (y) dy

] √
d2
A − l2 ≤ z < dA

1
Cd

∫ √z2+l2

z
z

l
√
y2−z2

fY R (y) dy dA ≤ z <
√
d2
M − l2

1
Cd

[∫ dM
z

z

l
√
y2−z2

fY R (y) dy

] √
d2
M − l2 ≤ z ≤ dM

We choose Cd so that Pr(Z ≥ dm) = 1, so

Cd =

∫ √d2
m+l2

dm

√
y2 − d2

m

l
fY L (y) dy +

∫ dA

√
d2
m+l2

fY L (y) dy +

∫ dM

dA

fY R (y) dy.

We note that in all cases reported by Douglas, the section width, l, is sufficiently small

that case i) does not occur.

4.5.3. Cdf FZ and Pdf fZ for the Complete Suppression by Primary

Tumor Model. In the case of the CSPT model, we have

Pr (Z ≥ z) = 1
Cd

∫ min{√z2+l2,dA}
z

√
y2−z2

l
fY (y) dy + 1

Cd

∫ dA
min{√z2+l2,dA} fY (y) dy

+ 1
Cd

Pr (Y = dA)
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if dm ≤ z <
√
d2
A − l2 and

Pr (Z ≥ z) = 1
Cd

∫ min{√z2+l2,dA}
z

√
y2−z2

l
fY (y) dy + 1

Cd

∫ dA
min{√z2+l2,dA} fY (y) dy

+ 1
Cd

√
d2
A−z2

l
Pr (Y = dA)

if
√
d2
A − l2 ≤ z ≤ dA.

Based on the proximity of dm and dA, as measured by the slice width, l, we have

two cases to consider:

Case i) dm ≤ dA ≤
√
d2
m + l2

Case ii) dm ≤
√
d2
m + l2 ≤ dA

Within each case, we have up to two regions in which z can lie. We now delineate

Pr(Z ≥ z) for z within the regions created in each case and find fZ(z) by differentiating

−Pr(Z ≥ z) with respect to z.

Case i) dm ≤ dA ≤
√
d2
m + l2

Here we must have dm ≤ z ≤ dA ≤
√
d2
m + l2, so

Pr (Z ≥ z) =
1

Cd

[∫ dA

z

√
y2 − z2

l
fY (y) dy +

√
d2
A − z2

l
Pr (Y = dA)

]

and

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY (y) dy +
z

l
√
d2
A − z2

Pr (Y = dA)

]
We choose Cd so that Pr(Z ≥ dm) = 1, so

Cd =

∫ dA

dm

√
y2 − d2

m

l
fY (y) dy +

√
d2
A − d2

m

l
Pr (Y = dA)

Case ii) dm ≤
√
d2
m + l2 ≤ dA

Region i) dm ≤ z <
√
d2
A − l2 ≤ dA

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY (y) dy +

∫ dA

√
z2+l2

fY (y) dy + Pr (Y = dA)

]
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fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY (y) dy

Region ii) dm ≤
√
d2
A − l2 ≤ z ≤ dA

Pr (Z ≥ z) =
1

Cd

[∫ dA

z

√
y2 − z2

l
fY (y) dy +

√
d2
A − z2

l
Pr (Y = dA)

]

fZ (z) =
1

Cd

[∫ dA

z

z

l
√
y2 − z2

fY (y) dy +
z

l
√
d2
A − z2

Pr (Y = dA)

]
Combining the results for fZ(z) in this case, we have

(4.9)

fZ (z) =


1
Cd

∫ √z2+l2

z
z

l
√
y2−z2

fY (y) dy dm ≤ z <
√
d2
A − l2

1
Cd

[∫ dA
z

z

l
√
y2−z2

fY (y) dy + z

l
√
d2
A−z2

Pr (Y = dA)

] √
d2
A − l2 ≤ z ≤ dA

We choose Cd so that Pr(Z ≥ dm) = 1 and therefore

Cd =

∫ √d2
m+l2

dm

√
y2 − d2

m

l
fY (y) dy +

∫ dA

√
d2
m+l2

fY (y) dy + Pr (Y = dA) .

In all cases reported by Douglas, the section width, l, is sufficiently small that case

i) does not occur, so we can focus on case ii) only.

4.5.4. Cdf FZ and Pdf fZ for the Instantaneous Infinite Shedding and

Metastasis Growth Model. For the Instantaneous Infinite Shedding and Metastasis

Growth model, we have

Pr (Z ≥ z) =
1

Cd

[
Pr (Y = dA) +

∫ ∞
dA

fY (y) dy

]
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if dm ≤ z <
√
d2
A − l2,

Pr (Z ≥ z) =

1

Cd

[
1

l

√
d2
A − z2 Pr (Y = dA) +

∫ √z2+l2

dA

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]

if
√
d2
A − l2 ≤ z < dA, and

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]

if z ≥ dA.

Based on the proximity of dm, and dA as measured by the slice width, l, we have

two cases to consider:

Case i) dm ≤ dA ≤
√
d2
m + l2

Case ii) dm ≤
√
d2
m + l2 < dA

Within each case, we have up to three regions in which z can lie. We now delineate

Pr(Z ≥ z) for z within the regions created in each case and find fZ(z) by differentiating

−Pr(Z ≥ z) with respect to z.

Case i) dm ≤ dA ≤
√
d2
m + l2]

Region i) dm ≤ z < dA ≤
√
d2
m + l2

Pr (Z ≥ z) =
1

Cd

[
1

l

√
d2
A − z2 Pr (Y = dA) +

∫ √z2+l2

dA

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]

fZ (z) =
1

Cd

[
z

l
√
d2
A − z2

Pr (Y = dA) +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY (y) dy

]
Region ii) dm ≤ dA ≤ z

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]
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fZ (z) =
1

Cd

[∫ √z2+l2

z

z

l
√
y2 − z2

fY (y) dy

]
Combining the results for fZ above, we have

fZ (z) =


1
Cd

[
z

l
√
d2
A−z2

Pr (Y = dA) +
∫ √z2+l2

dA

z

l
√
y2−z2

fY (y) dy

]
dm ≤ z < dA

1
Cd

[∫ √z2+l2

z
z

l
√
y2−z2

fY (y) dy

]
z ≥ dA

The constant Cd is chosen so that Pr(Z ≥ dm) = 1. Therefore

Cd =
1

l

√
d2
A − d2

m Pr (Y = dA) +

∫ √d2
m+l2

dA

√
y2 − d2

m

l
fY (y) dy +

∫ ∞
√
d2
m+l2

fY (y) dy

Case ii) dm ≤
√
d2
m + l2 < dA

Region i) dm ≤ z <
√
d2
A − l2 < dA

Pr (Z ≥ z) =
1

Cd

[
Pr (Y = dA) +

∫ ∞
dA

fY (y) dy

]
fZ (z) = 0

Region ii) dm ≤
√
d2
A − l2 ≤ z < dA

Pr (Z ≥ z) =
1

Cd

[
1

l

√
d2
A − z2 Pr (Y = dA) +

∫ √z2+l2

dA

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]

fZ (z) =
1

Cd

[
z

l
√
d2
A − z2

Pr (Y = dA) +

∫ √z2+l2

dA

z

l
√
y2 − z2

fY (y) dy

]
Region iii) z ≥ dA

Pr (Z ≥ z) =
1

Cd

[∫ √z2+l2

z

√
y2 − z2

l
fY (y) dy +

∫ ∞
√
z2+l2

fY (y) dy

]

fZ (z) =
1

Cd

∫ √z2+l2

z

z

l
√
y2 − z2

fY (y) dy
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Combining the results for fZ in this case, we have

fZ (z) =


0 dm ≤ z <

√
d2
A − l2

1
Cd

[
z

l
√
d2
A−z2

Pr (Y = dA) +
∫ √z2+l2

dA

z

l
√
y2−z2

fY (y) dy

] √
d2
A − l2 ≤ z < dA

1
Cd

∫ √z2+l2

z
z

l
√
y2−z2

fY (y) dy z ≥ dA

The constant Cd is chosen so that Pr(Z ≥ dm) = 1. Therefore,

Cd = Pr (Y = dA) +

∫ ∞
dA

fY (y) dy = 1

(In this case, no metastases can escape detection.) Comparing both cases, we see that

we can combine the expressions for fZ(z) to obtain

(4.10)

fZ (z) =


1
Cd

[
z

l
√
d2
A−z2

Pr (Y = dA) +
∫ √z2+l2

dA

z

l
√
y2−z2

fY (y) dy

]
, max

{
dm,

√
d2
A − l2

}
≤ z < dA

1
Cd

∫ √z2+l2

z
z

l
√
y2−z2

fY (y) dy, z ≥ dA

and 0 otherwise where

Cd = 1
l

√
d2
A −max {d2

m, d
2
A − l2}Pr (Y = dA) +

∫ max
{√

d2
m+l2,dA

}
dA

√
y2−d2

m

l
fY (y) dy

+
∫∞

max
{√

d2
m+l2,dA

} fY (y) dy.
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CHAPTER 5

Perils of Maximum Likelihood Estimation

5.1. Infinite Likelihood Using Volume Data and Expected Diameters

In using the method of maximum likelihood with observed volumes (as for Patient

A) to estimate parameters in the full model, we observe that the maximum likelihood

approaches infinity in at least two cases.

Case i) We have already remarked in (3.9) that taking the limit as γ0 → 0+ of the

Full model when eγ1R > m causes the pdf to converge pointwise to

p (x) =


1
γ1

(C9x)−1 ( x
eγ1R

)1/(ργ1)
(
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

∞ x = eγ1R

where

C9 = ρ
(
eσQ − e−

Q
ρ

)(
1−

( m

eγ1R

)1/(γ1ρ)
)

+
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
.

Thus the Full model likelihood,
n∏
i=1

p (xi), will become infinite if we set eγ1R =

xn

(
or γ1 = log(xn)

R

)
and then take the limit as γ0 → 0+.

Case ii) We have also noted in (3.14) that setting ρ = b0/γ0 and σ = a0γ0 and

taking the limit as γ0 →∞ will cause the Full model to converge pointwise to

p (x) =


∞ x = eγ1R

ab0
(
eγ1R

x

)a
a+b0

x > eγ1R

So, in this case, the Full model likelihood,
n∏
i=1

p (xi), will become infinite if we set

γ1 = log(x1)
R

, ρ = b0/γ0, and σ = aγ0 and then take the limit as γ0 → ∞. In reality,

the lower limits of the cell cycle duration place an upper bound on γ0, but it is still
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instructive to consider this case for what it can tell us about situations when γ0 is

large.

In both of these cases, the likelihood is going to infinity because the distribution is

changing from a continuous distribution to a mixed continuous/discrete distribution.

In Case i) (CSPT) the mixed distribution is

(5.1) p (x) =
1

γ1

(C9x)−1
( x

eγ1R

)1/(γ1ρ) (
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

and Pr
(
x = eγ1R

)
= (C9)−1

[
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)]
where C9 = ρ

(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

)1/(γ1ρ)
]

+
1

σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
.

See (3.11).

In Case ii) (IISMG) the mixed distribution is

(5.2)
p (x) = (x)−1 ab0

(
eγ1R

x

)a
a+b0

, eγ1R < x <∞

and Pr
(
x = eγ1R

)
= a

a+b0
.

See (3.2.2).

Because in these cases the Full model likelihood is approaching infinity, we change

to the respective limiting submodels in order to estimate parameters.

5.1.1. Maximum likelihood estimation for the CSPT model. When max-

imizing the CSPT likelihood given observed metastasis volumes x1, x2, . . . , xn, we see

that if xn > eγ1R, the likelihood will be 0. On the other hand, if xn < eγ1R, the

likelihood is

L =
n∏
i=1

(1− v)x−1
i

(
xi
eγ1R

)1/(γ1ρ)

γ1ρ
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

which simplifies to

L =
n∏
i=1

(1− v)x−1
i xi

1/(γ1ρ)e−R/ρ

γ1ρ [1−m1/(γ1ρ)e−R/ρ]
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and the log-likelihood becomes

logL =

n log (1− v)−
n∑
i=1

log xi+
1

γ1ρ

n∑
i=1

log xi−n
R

ρ
−n log (γ1ρ)−n log

[
1−m1/(γ1ρ)e−R/ρ

]
.

The partial of logL with respect to γ1 is

∂

∂γ1

logL =
−1

γ2
1ρ

n∑
i=1

log xi −
n

γ1

− n
1
ργ2

1
m1/(γ1ρ)e−R/ρ logm

1−m1/(γ1ρ)e−R/ρ

which we can see is negative. Thus γ1 will decrease toward the smallest possible value,

which occurs as eγ1R approaches xn from above.

Although it will not be directly comparable to the previous likelihood, we can write

the limiting likelihood as

L = vk (1− v)n−k
n−k∏
i=1

x−1
i

(
xi
xn

)1/(γ1ρ)

γ1ρ

[
1−

(
m
xn

)1/(γ1ρ)
]

where k is the number of metastases of size xn and

(5.3) γ1 = log(xn)/R.

The log-likelihood is then

logL = k log v + (n− k) log (1− v)−
n−k∑
i=1

log xi +
n−k∑
i=1

1
γ1ρ

log xi
xn

− (n− k) log (γ1ρ)− (n− k) log

[
1−

(
m
xn

)1/(γ1ρ)
]

Taking the partial with respect to v gives

∂

∂v
logL =

k

v
− n− k

1− v
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Setting this partial to zero and solving gives

(5.4) v =
k

n
,

which gives a maximum of L with respect to v because

∂2

∂v2
logL = − k

v2
− n− k

(1− v)2
< 0.

Because we have already fixed γ1, we can find the optimal value for ρ by finding

the optimal value for b1 = 1
γ1ρ

where

logL = k log v + (n− k) log (1− v)−
n−k∑
i=1

x−1
i +

n−k∑
i=1

b1 log xi
xn

+ (n− k) log b1 − (n− k) log

[
1−

(
m
xn

)b1]
.

The partial of the log-likelihood with respect to b1 is then

(5.5)
∂

∂b1

logL =
n−k∑
i=1

log
xi
xn

+
n− k
b1

+ (n− k)

(
m
xn

)b1
log m

xn

1−
(
m
xn

)b1 .

Setting this partial to zero, we see that we must solve

(5.6) g (b1) =

n−k∑
i=1

log xn
xi

n− k

where

g (b1) =
1

b1

−
log xn

m(
xn
m

)b1 − 1

We note that

lim
b1→−∞

g (b1) = log
xn
m

= log xn − logm

and that

lim
b1→∞

g (b1) = 0.
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Although g is undefined at 0, if we write g as

g (b1) =

(
xn
m

)b1 − 1− b1 log xn
m

b1

[(
xn
m

)b1 − 1
] =

exp
(
b1 log xn

m

)
− 1− b1 log xn

m

b1

[
exp

(
b1 log xn

m

)
− 1
]

and then use the Maclaurin series for ex, we have

g (b1) =

∞∑
i=2

1
i!

(
b1 log xn

m

)i
bi
∞∑
i=1

1
i!

(
b1 log xn

m

)i .

=

log
(
xn
m

) ∞∑
i=0

1
(i+2)!

(
b1 log xn

m

)i
∞∑
i=0

1
(i+1)!

(
b1 log xn

m

)i
From this it is apparent that g has a removable discontinuity at b1 = 0 where

lim
b1→0

g (b1) =
1

2
log

xn
m

=
1

2
(log xn − logm) .

Because m is the smallest detectable metastasis size and xn is the size of the largest

observed metastasis, we have

lim
b1→∞

g (b1) = 0 <

n−k∑
i=1

log xn
xi

n− k
<

n−k∑
i=1

log xn
m

n− k
= log

xn
m

= lim
b1→−∞

g (b1)

and therefore (5.6) has at least one solution. In Appendix C, we show that g is a

decreasing function so that the solution to (5.6) is unique. The solution, b1, will only

be positive if

log
xn
m

> 2

n−k∑
i=1

log
(
xn
xi

)
n− k

,

or, equivalently,

1

n− k

n−k∑
i=1

log xi >
logm+ log xn

2
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5.1.1.1. Complete Suppression by Primary Using Profile Data. When we

convert profile diameters to their expected diameters and use these to estimate param-

eters, the maximum likelihood equations for γ1 and v become

(5.7) γ1 =
3

R
log

yn
cd

where cd is the diameter of a single cell, and

(5.8) v =
k

n
.

To find b1, we must solve

(5.9) g̃ (b1) =

n−k∑
i=1

log yn
yi

n− k

where

g̃ (b1) =
1

3b1

−
log yn

dm(
yn
dm

)3b1
− 1

.

Then γ1 and b1 can be used to recover ρ and γ1 and, finally, ρ and v can be used with

(3.13) to determine the relationship between σ and Q.

5.1.2. Maximum likelihood estimation for the IISMG model. In (5.2), if

we set v = Pr (x = A) = a
a+b0

, then 1 − v = b0
a+b0

and p(x) for the IISMG model

becomes

p (x) = (1− v) ax−1

(
A

x

)a
, A < x <∞

In order to maximize the likelihood given observed metastasis volumes x1, x2, . . . , xn,

we see that if x1 < A, the likelihood will be zero. On the other hand, if x1 > A, the

likelihood will be

L = (1− v)n an
n∏
i=1

(xi)
−1

(
A

xi

)a
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and the log-likelihood will be

logL = n log (1− v) + n log a+ na logA− n log xi − a
n∑
i=1

log xi

Because L is an increasing function of A, the maximum value of L occurs as A

approaches x1 from below. Although it will not be directly comparable to the previous

likelihood, we can write the limiting likelihood as

L = vk (1− v)n−k an−k
n∏

i=k+1

xi
−1

(
x1

xi

)a
where k is the number of metastases of size x1. The log-likelihood is then

logL = k log v+(n− k) log (1− v)+(n− k) log a+(n− k) a log x1−(a+ 1)
n∑

i=k+1

log xi.

The partial of logL with respect to v is ∂
∂v

logL = k
v
− (n−k)

1−v . If we set this partial equal

to zero, we find that

(5.10) v =
k

n

which is clearly a point of global max of L for v ∈ [0, 1].

The partial of logL with respect to a is

∂

∂a
logL =

n− k
a

+ (n− k) log x1 −
n∑

i=k+1

log xi.

If we set this partial to zero, we find that

(5.11)
1

a
= x̄

where

x̄ =

n∑
i=k+1

log xi
x1

n− k
,
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Which is again a global maximum of L for a > 0. Knowing a, we can solve

v =
a

a+ b0

to obtain

(5.12) b0 =
1− v
v

a =
n− k
k

a =
n− k
kx̄

=
(n− k)2

k
∑n

i=k+1 log xi
x

5.1.2.1. Instantaneous Infinite Shedding and Metastasis Growth Using

Profile Data. When we convert profile diameters to their expected diameters, and

use these to estimate parameters, the IISMG likelihood is

L = vk (1− v)n−k an−k
n∏

i=k+1

yi
−1

(
y1

yi

)3a

where k is the number of metastases of size y1. The log-likelihood is then

logL = k log v+(n− k) log (1− v)+(n− k) log a+3 (n− k) a log y1−(3a+ 1)
n∑

i=k+1

log yi.

We again find that the maximum likelihood estimate for v is

(5.13) v =
k

n
.

The maximum likelihood estimate for a is

(5.14) a =
n− k

3
n∑

i=k+1

log yi
y1

and the maximum likelihood estimate for b0 is

(5.15) b0 =
(n− k)2

3k
n∑

i=k+1

log yi
y1

.
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5.2. CSPT Using the Method of True Diameters

Assuming that
√
d2
m + l2 < dA, when we apply the Method of True Diameters (4.9)

with the Complete Suppression by Primary Tumor model (3.11), we obtain

(5.16)

fZ (z) =


1
Cd

3b1(1−v)

d
3b1
A −d

3b1
m

∫ √z2+l2

z
z

l
√
y2−z2

y3b1−1dy, dm ≤ z <
√
d2
A − l2

1
Cd

[
3b1(1−v)

d
3b1
A −d

3b1
m

∫ dA
z

z

l
√
y2−z2

y3b1−1dy + zv

l
√
d2
A−z2

]
,
√
d2
A − l2 ≤ z < dA

and 0 otherwise, where

Cd = 1− 3b1 (1− v)

d3b1
A − d

3b1
m

∫ √d2
m+l2

dm

(
l −
√
y2 − d2

m

l

)
y3b1−1dy.

We note that because of the term zv

l
√
d2
A−z2

in fZ , if zn is the largest profile diameter,

then fZ(zn) will approach infinity as dA ↓ zn, and so will the likelihood.

Because of this, we expect that if we use the non-rounded likelihood with the Full

model, then γ0 will tend to zero so that the Full model will approach the CSPT model

and if we then compute the CSPT likelihood, dA will decrease toward the largest profile

diameter, zn, and the CSPT likelihood will tend to infinity.

Although the term zv

l
√
d2
A−z2

approaches infinity as dA ↓ z, it does not become a

point mass at z because∫ dA

z

sv

l
√
d2
A − s2

ds =
v

l

∫ dA

z

s√
d2
A − s2

ds =
v

l

√
d2
A − z2,

which tends to zero as dA ↓ z. Note that if we use the method of True Diameters with

rounding, the likelihood will not diverge to infinity because we will be using actual

probabilities which are bounded between 0 and 1.
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5.3. IISMG Using the Method of True Diameters

When we apply the Method of True Diameters (4.10) with the Instantaneous Infi-

nite Shedding and Metastasis Growth model (3.2.2), we have

(5.17)

fZ (z) =



1
Cd

[
z

l
√
d2
A−z2

a
a+b0

+
∫ √z2+l2

dA

z

l
√
y2−z2

3y−1 ab0
a+b0

(
dA
y

)3a

dy

]
,

max
{
dm,

√
d2
A − l2

}
≤ z < dA

1
Cd

[∫ √z2+l2

z
z

l
√
y2−z2

3y−1 ab0
a+b0

(
dA
y

)3a

dy

]
, z ≥ dA

and 0 otherwise where

Cd = 1
l

√
d2
A −max {d2

m, d
2
A − l2} a

a+b0
+
∫ max

{√
d2
m+l2,dA

}
dA

√
y2−d2

m

l
3y−1 ab0

a+b0

(
dA
y

)3a

dy

+
∫∞

max
{√

d2
m+l2,dA

} 3y−1 ab0
a+b0

(
dA
y

)3a

dy.

We note that because of the term z

l
√
d2
A−z2

a
a+b0

in fZ , if zi is a profile diameter, then

fZ(zi) will approach infinity as dA ↓ zi, and, so long as all profiles smaller than zi are

greater than
√
z2
i − l2, the likelihood will also approach infinity. Therefore, if z1 is the

smallest observed profile diameter, and if z2, z3, . . . , zi are observed profile diameters

between z1 and
√
z2

1 + l2, the likelihood will approach infinity when dA approaches any

of z1, z2, z3, . . . , or zi from above. Thus, unless we place a bound on γ0, if we start with

the non-rounded Full model likelihood and allow γ0 to approach infinity as ρ tends to

zero and θβ tends to infinity, there will be multiple values that dA can approach that

will create unbounded likelihood. Although the term z

l
√
d2
A−z2

a
a+b0

approaches infinity

as dA ↓ z, it does not become a point mass at z because∫ dA

z

s

l
√
d2
A − s2

a

a+ b0

ds =
a

l (a+ b0)

∫ dA

z

s√
d2
A − s2

ds =
a

l (a+ b0)

√
d2
A − z2

which tends to zero as dA ↓ z. Again, we note that if we use the method of True

Diameters with rounding, the likelihood will not diverge to infinity.
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CHAPTER 6

Data Analysis and Parameter Estimation

In this chapter we present the results of searching for optimal parameters for our

models using data from Patient A, Protocol 17, and Protocol 10. Because the likeli-

hoods and L2 norms differ depending on the type of data, the method used, and the

model selected, we adopt the following conventions: (1) We use “L” to designate a nor-

malized negative log-likelihood (NNLL) and “∆” to designate an L2 distance between

empirical and theoretical cdfs, (2) Subscripts of V,E, T, and R designate “Volumes”,

“Expected Diameters”, “True Diameters”, and “True Diameters with Rounding”, re-

spectively, and (3) Subscripts of F,H, S,G,C, and I designate the “Full”, “Homoge-

neous”, “HSLL”, “IISMG”, “CSPT”, or “Instantaneous Seeding” model, respectively.

For example, LV F indicates the normalized negative log likelihood

LV F (A,M, a, b0, b1) := − 1

n

n∏
k=1

log [p (xk)]

where xk is the kth recorded volume, n is the total number of metastasis observed in

the given location, and p is the full model pdf given in (2.22). Similarly, ∆V F would

indicate the L2 distance between the empirical and theoretical cdfs given by

∆2
V F =

n+1∑
k=1

∫ xk

xk−1

[
P (u)− 1

n

k−1∑
i=1

nj

]2

du

where x0 = dm, xk, 1 ≤ k ≤ n is the kth recorded volume, xn+1 = M, and P (u) is the

cdf corresponding to the pdf in (2.22).

When using the method of True Diameters with Rounding, we can compute the L2

distance between the empirical and theoretical cdfs. However, in order to make the L2

distance computation account for rounding, we can assume that the true cross-sectional
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diameter whose reported value after rounding was k mm is uniformly distributed on

the interval [k − 0.5, k + 0.5]. We can then compute the distance between the model-

based theoretical cdf and the corresponding piecewise linear continuous empirical cdf.

When we compute an L2 distance between the theoretical distribution and the piece-

wise linear continuous empirical cdf, we designate it with an additional subscript “P”.

For example, ∆RF designates the L2 distance computed between the full pdf for true

diameters and the empirical cdf given by

∆2
RF =

n+1∑
k=1

∫ zk

zk−1

[
FZ(z)− 1

n

k−1∑
i=1

ni

]2

dz

where z0 = dm; zk, 1 ≤ k ≤ n, is the kth observed profile diameter; zn+1 = dM ; and

FZ is the cdf corresponding to the pdf obtained by combining (4.3) with (4.7). On the

other hand, ∆RFP designates the L2 distance computed between the full pdf for true

diameters and the piecewise linear continuous empirical cdf. Specifically,

∆2
RFP =

n+2∑
k=1

∫ Bk

Bk−1

[FZ(z)−G (z)]2 dz

where B0 = 0, Bk = k − 0.5, 1 ≤ k ≤ n + 1; Bn+2 = dM ; G(z) is the piecewise linear

continuous empirical cdf; and FZ is again the cdf corresponding to the pdf obtained

by combining (4.3) with (4.7).
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6.1. Patient A

The MSKCC database contains information from several hundred MSKCC breast

cancer patients. For the purposes of fitting our model, the database was searched for

candidates for whom (1) treatment included excision of the primary tumor, (2) whole

body PET/CT scans were available, (3) a large number of metastases were observed in

a single site, (4) primary tumor volume at presentation was available, (5) the volumes

of the primary tumor and the secondary tumors were measured at different times and

(6) no change of treatment occurred between diagnosis and the time of metastasis

surveying. It was found that only one patient, whom we call Patient A, met these

criteria. On 4/1/96, at age 74, Patient A was diagnosed with stage III estrogen receptor

positive breast cancer. Shortly thereafter, the primary tumor of volume 10.3 cm3 was

resected and Patient A began an adjuvant hormonal therapy with tamoxifen. On

4/6/04, at age 82, 37 detectable metastases were discovered in Patient A’s bone, lung,

lymph, and soft tissues. The sizes of these metastases were surveyed by PET/CT

imaging. Thus U = V = 74, W = 82, and S = 10.3 cm3. The prevalent metastatic

site was the skeletal system which was found to contain 31 metastases. The sizes

of these bone metastases were 26, 31, 31, 31, 33, 34, 38, 47, 49, 51, 52, 54, 54, 55,

65, 67, 73, 78, 78, 81, 84, 87, 98, 101, 114, 139, 142, 172, 196, 213, and 354 voxels.

As it would be unlikely for two or more metastases to have exactly the same size,

we thought it reasonable to smooth the data by distributing equal sizes uniformly

over their respective bins. For example, the three metastases of size 31 voxels must

have contained between 30 and 32 voxels and so we spread them uniformly over that

interval by assuming that they had sizes 30.5, 31, and 31.5 voxels. The size of a voxel

was estimated to be 0.06485 cm3 and this was used to convert the voxel counts to the

volumes 1.69, 1.98, 2.01, 2.04, 2.14, 2.2, 2.46, 3.05, 3.18, 3.31, 3.37, 3.48, 3.52, 3.57,

4.22, 4.34, 4.73, 5.04, 5.08, 5.25, 5.45, 5.64, 6.36, 6.55, 7.39, 9.01, 9.21, 11.15, 12.71,

13.81, and 22.96 cm3.
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For the scanner used, the threshold of measurable volumes was reported as 5× 108

cells. Assuming a volume of 1× 10−9 cm3 for one tumor cell, we obtained a minimum

observable volume of m = 0.5 cm3.

We used the maximum likelihood method to estimate the parameters for the Full

model. To accomplish this, we used a Matlab routine based on the non-linear simplex

method to minimize the negative log-likelihood. Because of the discontinuity in the

pdf at A, we searched exhaustively with A restricted first below m, then between m

and the smallest observed metastasis size, then between successive metastasis sizes,

and finally with A restricted between the largest metastasis size and M . We then

examined the minimum NNLL, LV F , found in each sub-interval. In every case, we

applied the constraints a, b0, b1, T > 0 and M > xn (where xn was the maximum

observed metastasis volume) as we searched.

When A was restricted to lie between the two smallest observed metastasis sizes

(1.69 and 1.98 cm3) or between the smallest observable metastasis size and smallest

observed metastasis size (0.5 and 1.69 cm3) the likelihood degenerated into the In-

stantaneous Infinite Shedding and Metastasis Growth (IISMG) Model given in (5.2).

This gave A = 1.69 cm3 and using (5.10), (5.11), and (5.12), we found that v = 1
31
,

a = 0.9705 and b0 = 29.114 with L∗V G = 2.6443.

Comparing the theoretical cdf for the IISMG model to the empirical cdf, we found

that the L2 norm of the difference between the two was ∆V G = 0.5096.

When A was restricted to lie between the two largest metastasis sizes (13.81 and

22.96) the likelihood degenerated into the Complete Suppression by Primary Tumor

Model (CSPT) given in (5.1). This gave A = 22.96 and using (5.3), (5.4), and (5.6),

we found that γ1 = 2.9770, v = 1
31
, b1 = 0.2052, and ρ = 1.6370 with L∗V C = 2.8376.

Using equation (5.6), we solved numerically for Q as a function σ and obtained the

graph shown in Figure 1.

Comparing the theoretical cdf for the CSPT model to the empirical cdf, we found

that the L2 norm of the difference between the two was ∆V C = 0.6351 Plots of the
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Figure 1. Q = V − T as a function of σfor the CSPT model applied
to Patient A.

(a) CSPT (b) IISMG

Figure 2. Graphs of empirical and theoretical cdfs for the likelihood
maximizing parameters for the CSPT and IISMG models applied to
Patient A.

empirical and theoretical cdfs for the likelihood maximizing CSPT and IISMG models

are shown in Figure 2. That the fits are both visually and numerically poor is not

surprising because the model degeneration into the CSPT and IISMG cases is driven

more by the transition from a continuous distribution to a mixed discrete/continuous

distribution than by an actual increase in likelihood.

After the two cases where infinite likelihood was anticipated because of the transi-

tion of the distribution from continuous to mixed discrete-continuous, we found that
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(a) A (b) A close-up (c) M

(d) a (e) b0 (f) b1

Figure 3. Graphs of NNLL profile functions for likelihood maximizing
parameters with A = 2.040,M = 26.142, a = 0.5232, b0 = 4.7573, and
b1 = 17.1755.

the lowest value of the NNLL was L∗V F = 2.3844, which was obtained when A =

2.040,M = 26.142, a = 0.5232, b0 = 4.7537, and b1 = 17.1755. Recovering our original

parameters, we compute that ρ = 0.0218 years, T = 73.7 years, γ0 = 9.6649 year−1,

γ1 = 2.6750 year−1, β = 87.3674 year−1 and θ = 0.0579. The plots in Figure 3 show

the likelihood as each parameter is varied independently and help us to verify that we

have indeed reached a minimum value.

In order to quantify the fit of the model to the data, we computed the L2 norm

of the difference between the empirical and theoretical cdfs and found it to be ∆V F =

0.1885, a marked improvement over .5096 and .6351 obtained from the IISMG and

CSPT. The graph of the empirical versus theoretical cdfs for the maximum likelihood

estimates is shown in Figure 5a and shows a much better fit than when the CSPT and

IISMG models were used. By comparison, we compute that the minimum L2 norm

of ∆∗V F = 0.1014 is achieved when A = 3.5455,M = 30.7089, a = 1.1249, b0 = 4.7537
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(a) A (b) M

(c) a (d) b0 (e) b1

Figure 4. Plots of the L2 norm profile functions for the difference be-
tween the empirical and theoretical cdfs for the full model for the L2 norm
minimizing parameter set: A = 3.5455,M = 30.7089, a = 1.1249, b0 =
2.1295, and b1 = 2.3515.

(a) Maximum Likelihood (b) Minimum L2 Distance

Figure 5. Graphs of empirical and theoretical cdfs for (a) the likeli-
hood maximizing and (b) L2 distance minimizing parameters for the Full
model applied to Patient A.
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and b1 = 2.3515. The plots in Figure 4 show the L2 norm of the distance between

the empirical and theoretical cdfs as each parameter is varied independently and help

us to verify that we have indeed reached a minimum value. These minimizing values

of the simplifying parameters correspond to the native parameter values γ0 = 3.0301,

γ1 = 2.7439, T = 73.2875, ρ = 0.1550, β = 32.2592, and θ = 0.1053. The normalized

negative log-likelihood (NNLL) in this case is naturally somewhat worse at LV F =

2.4740. The graph of the empirical versus theoretical cdfs for the L2 norm minimizing

estimates is shown in Figure 5b and shows a visible improvement over the fit obtained

by maximizing likelihoods.

The IISMG model is not biologically realistic in that it requires γ0 → ∞ while

the duration of the cell-cycle places an upper bound on the growth rates β, γ0, and γ1.

When we imposed this bound, that corresponded to a minimum of 20 hours to complete

the cell cycle, we found that the maximum likelihood in the Full model occurred when

A = 1.69, M = 7.0145×1017, a = 1.0028, b0 = 9.6947×1014 and b1 = 1.1101×1017 with

LV F = 2.3661. These values indicated that the model was attempting to degenerate

into the IISMG model, but the bound on cell cycle duration prevented that from

happening and the NNLL stayed finite. The plot of empirical vs. theoretical cdf’s

was nearly identical to the plot obtained with the IISMG model. Through numerical

experimentation, we found that the minimum value of ∆V F for A near 1.69 stayed

lower than the minimum value of ∆V F obtained when A = 2.04 (i.e. ∆V F = 2.3844)

until the minimum cell cycle duration was increased to 35.1 hours.

Although the maximum likelihood is better near A = 1.69, we reject this maxi-

mum because it is best explained by the transition of the full-model to a mixed dis-

crete/continuous distribution and does not give a compelling fit to the data when the

theoretical cdf is compared to the empirical cdf. Similarly, we reject the maximum

likelihood obtained near A = 22.96 because its fit to the data (as measured by the L2

norm of the distance between the theoretical and empirical cdfs) is even worse.

Our results are summarized in Table 1.
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Patient A Parameters
Model NNLL L2 distance A cm3 M cm3 a b0 b1

CSPT L∗V C = 2.8376 ∆V C = 0.6351 22.96 22.96 ∞ ∞ 0.2048
IISMG L∗V G = 2.6443 ∆V G = 0.5096 1.69 ∞ 0.9705 29.114 ∞

Full L∗V F = 2.3843 ∆V F = 0.1885 2.040 26.142 0.5232 4.7573 17.1755
Full LV F = 2.4740 ∆∗V F = 0.1014 3.5455 30.7089 1.1249 2.1295 2.3515

Native Parameters
Model γ0 year−1 γ1 year−1 T years ρ years β θ
CSPT 0 2.9821 0.0589 ≤ Q 1.6370 σ free from

≤ 0.3727 0 to 0.373
IISMG ∞ 2.6496 NA 0 σ =∞

Full 9.6649 2.6749 73.736 0.02177 87.3637 0.05789
Full 3.0301 2.7439 73.2875 0.1550 32.3592 0.1053

Table 1. Summary of parameters for Patient A

6.2. Protocol 10

The data in Douglas’ protocol 10 come from a 65-year-old man who died from an

oat cell carcinoma of the lung. The primary tumor, which was in situ at autopsy, had

a diameter of 105 mm. Thus W = V = 65 and S = π(105mm)3

6
≈ 606131mm3. The

metastases were measured by slicing the liver into l = 7mm sections. The counts of

diameters of the observed circular profiles were reported as n1 = 119, n2 = 96, n3 =

39, n4 = 30, n5 = 31, n6 = 8, n7 = 10, n8 = 18, n9 = 3, n10 = 16, n11 = 1, n12 = 9, n13 =

1, n14 = 2, n15 = 22, n16 = 1, n17 = 11, n18 = 2, n19 = 0, n20 = 4, n21 = 0, n22 = 1, n23 =

0, n24 = 0, andn25 = 4, where ni indicates the number of circular profiles observed to

have diameter of i mm (rounded to the nearest mm.)

6.2.1. Method of Expected Diameters. As a first estimate, we used (4.6) to

convert the observed profile diameters from Protocol 10 to expected true diameters

and obtained the values shown in Table 2.

We then used this synthetic data to compute the NNLL

LEF (dM , a, b) = − 1

n

25∑
k=1

nk log fY (E(k))
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Count 119 96 39 30 31 8 10 18 3
Profile Diameter
(mm)

1 2 3 4 5 6 7 8 9

Expected
Diameter (mm)

3.724 4.202 4.826 5.546 6.333 7.167 8.035 8.927 9.839

Count 16 1 9 1 2 22 1 11
Profile Diameter
(mm)

10 11 12 13 14 15 16 17

Expected
Diameter (mm)

10.765 11.703 12.649 13.603 14.563 15.528 16.497 17.469

Count 2 0 4 0 1 0 0 4
Profile Diameter
(mm)

18 19 20 21 22 23 24 25

Expected
Diameter (mm)

18.444 19.421 20.401 21.383 22.366 23.350 24.336 25.323

Table 2. Expected diameters (in mm) of metastases for the patient in
Protocol 10.

where n is the total number of observed profiles, k is the profile diameter (in mm),

E(k) is the expected spherical diameter, nk is the number of profiles of diameter k,

and fY is the full model pdf given in (4.2).

The functional LEF (dM , a, b0) was minimized over all dM ≥ E(25) = 25.323 mm,

a > 0, and b0 > 0. This lead to the estimates dM = 26.808 mm, b0 = 0.78582, and a

essentially zero with NNLL of LEF = 2.8832. A value of a near 0 indicated that the Full

model was degenerating into the Homogeneous model, so we minimized the functional

LEH(dM , b0) (which is the same as LEF above but with fY (y) given by (4.4).) Fitting

this model gave dM = 26.8077 mm and b0 = 0.7858 with a slightly higher NNLL value

of L∗EH = 2.8864. To ascertain that what we had found was indeed a minimum, we

constructed profile graphs of the functional LEH where all parameters except for the

one of interest were fixed at their optimal values while the selected parameter was

varied over the entire range of its admissible values, see Figure 6.

In order to assess the fit of our models to the data, we compared the empirical cdf for

the transformed data to the theoretical cdf of tumor diameters obtained by integrating

(4.2) for the Full model and (4.4) for the Homogeneous model. We quantified the fit
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(a) a (b) dM (c) b0

Figure 6. Graphs of NNLL profile functions for likelihood maximizing
parameters. Plot (A) shows that parameter a is approaching 0 so that
the Full model degenerates into the Homogeneous model. Plots (B) and
(C) show dM and b0 when the Homogeneous model is applied to the
transformed data.

by computing the L2 norm of the difference between the empirical and theoretical cdfs.

For example, to compare the theoretical cdf for the Full model to the empirical cdf,

we computed ∆EF where

∆2
EF =

K+1∑
k=1

∫ Ek

Ek−1

[
H(u)− 1

n

k−1∑
j=1

nj

]2

du.

Here E0 := E(dm);Ek = E(k), 1 ≤ k ≤ K;Ek+1 := E(dM) and H is the cdf corre-

sponding to the Full model pdf (4.2). The L2 distance ∆EH is similar to ∆EF but with

the cdf H corresponding to the Homogeneous model pdf (4.4).

The L2 norm of the difference between the theoretical and empirical cdfs was ∆EF =

0.7558 when using the Full model and ∆EH = 0.7558 for the Homogeneous model as

well. The plot of the empirical vs. theoretical cdfs for the Homogeneous model with

likelihood maximizing values of the parameters is shown in Figure 7a). By comparison,

for the non-homogeneous model, the minimum L2 norm of ∆∗EF = 0.7074 was achieved

when dM = 25.3231 mm, b0 = 5.5264, and a essentially zero. For the Homogeneous

model, the minimum L2 norm of 0.7073 was achieved with dM = 25.3230 mm and

b0 = 5.6379. The plot of the empirical vs. theoretical cdfs for the Homogeneous model

with L2 distance minimizing values of the parameters is shown in Figure 7b. We
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(a) Maximum Likelihood (b) Minimum L2 Distance

Figure 7. Graphs of empirical and theoretical cdfs for transformed
diameters of metastases. Plot (A) shows the Homogeneous model with
likelihood maximizing values dM = 26.808 mm and b0 = 0.7858. The
L2 norm of the difference between the two cdfs is 0.7558. Plot (B)
shows the Homogeneous model with L2 distance minimizing values dM =
25.3230 mm and b0 = 5.6379. The L2 norm of the difference between
the two cdfs is 0.7073.

notice that even at minimum L2, there is a wide divergence between the two cdfs in

the lower ranges. One cause is that all 119 profiles of diameter 1 mm were converted

to the diameter 3.724 mm, whereas, in reality, observations of profile diameters with

diameter 1 mm would have come from tumors with diameters in a range from 0.5 mm

to more than 6.5 mm. We also note that tumors of diameter less than the 7 mm section

width can escape detection and are therefore under-represented in the empirical cdf.

6.2.2. Method of True Diameters. In order to refine our results and better

account for the varying sizes of small tumors, we changed to the True Diameter method

described in Section 4.4.2. We used the Full model pdf fY (y), given in (4.2), with the

method described in Section 4.5 to create the pdf of observed profile diameters, fZ(z),

and then minimized the NNLL LTF given by

LTF (dM , a, b0) = − 1

n

K∑
k=1

nk log(fZ(k)).
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(a) dM (b) a (c) b0

Figure 8. Graphs of NNLL profile functions using the method of true
diameters without rounding for likelihood maximizing parameters dM , a,
and b0 when applied to the data for Protocol 10.

We found the minimum NNLL of L∗TF = 2.4393 occurred when dM = 27.4288 mm,

a = 0.2636, and b0 = 1.4487. Graphs of the NNLL profiles as a function of the individ-

ual parameters are shown in Figure 8. The profile functions for all three parameters

displayed a clear-cut minimum. Of note is a significant improvement in the likeli-

hood, as compared to the Method of Expected Diameters, and the fact that this time

the model did not degenerate into its Homogeneous limiting case. The fit between

the theoretical cdf and its empirical counterpart in Figure 9a also shows a dramatic

improvement compared to the Method of Expected Diameters. This is confirmed by

computing the L2 distance, ∆TF , between the theoretical and empirical cdf’s given by

∆2
TF =

K+1∑
k=1

∫ Ak

Ak−1

[
FZ(u)− 1

n

k−1∑
j=1

nj

]2

du

where FZ is the cdf corresponding the pdf fZ(z), A0 := dm; Ak = k, 1 ≤ k ≤ K; and

AK+1 := dM . The result turned out to be ∆TF = 0.1603, a dramatic improvement

relative to the value ∆EF = 0.7558 obtained for the Method of Expected Diameters.

Finally, we estimated model parameters by minimizing the functional ∆TF , which

yielded the folowing results: ∆∗TF = 0.14398, LTF = 2.4426, dM = 26.250 mm, a =

0.2956, and b = 5.4099. Notice a further improvement in L2 distance compared to

the value for the maximum likelihood parameters. The profiles (not shown) of the
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(a) Maximum Likelihood (b) Minimum L2 Distance

Figure 9. Graphs of empirical and theoretical cdfs for the Method of
True Diameters. Plot (A) shows the Full model with likelihood maximiz-
ing values values dM = 27.4288 mm, a = 0.2636, and b0 = 1.4487. The
L2 norm of the difference between the two cdfs is 0.1603. Plot (B) shows
the Full model with L2 distance minimizing values dM = 26.520 mm,
a = 0.2956, and b0 = 5.4099. The L2 norm of the difference between the
two cdfs is 0.14398.

functional ∆TF displayed a clear-cut minimum. The fit between the two cdf’s is given

in Figure 9b.

6.2.3. Protocol 10 True Diameters with Rounding. As a further refinement

to the True Diameter Method, we compensated for the fact that Douglas rounded

tumor profile diameters to the nearest 1 mm by using the True Diameter with Rounding

method described by (4.8) in section 4.4.3. Specifically, we minimized

LRF (dM , a, b0) = − 1

n

K∑
k=1

nk logP (k − 0.5 ≤ z ≤ k + 0.5)

where

P (k − 0.5 ≤ d ≤ k + 0.5) = FZ(k + 0.5)− FZ(k − 0.5).

The minimum NNLL of  L∗RF = 2.4136 was obtained when dM = 27.2866 mm, a =

0.2861, and b0 = 2.0788. Graphs of the NNLL profile functions as the individual

parameters are varied are shown in Figure 10 and display a clear-cut minimum.
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(a) dM (b) a (c) b0

Figure 10. Graphs of NNLL profile functions of the likelihood max-
imizing parameters dM , a, and b0 when the method of true diameters
with rounding is applied to the data for Protocol 10.

As described at the start of this chapter, in order to make our L2 distance compu-

tation account for rounding, we assumed that the true cross-sectional diameter whose

reported value after rounding was k mm was uniformly distributed on the interval

[k − 0.5, k + 0.5]. In this case the L2 distance, ∆RFP between the model-based theo-

retical cdf FZ and the corresponding piecewise linear continuous empirical cdf, G, is

given by the formula

∆2
RFP =

K+2∑
k=1

∫ Bk

Bk−1

[FZ(z)−G(z)]2 dz,

where B0 = 0; Bk = k − 0.5, 1 ≤ k ≤ K + 1 (here K = 25); and Bk+2 = dM .

For the above likelihood maximizing parameters we found ∆RFP = 0.08493. A

comparison graph of the empirical and theoretical cdfs is shown in Figure 11. For the

purpose of comparison to the other methods we have already considered, we computed

the L2 norm of the distance between the empirical cdf and theoretical cdf as well and

found that ∆RF = 0.1457, which was just slightly higher than the value we obtained

by minimizing ∆RF in Section 6.2.2

Finally, we estimated model parameters by minimizing ∆RFP over dM ≥ K+0.5 =

25.5 mm, a > 0, and b0 > 0. This led to ∆∗RFP = 0.08264, LRF = 2.4146, dM = 26.464

mm, a = 0.2942 and b = 5.2491. Notice a further reduction of the L2 distance between
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Figure 11. Piecewise continuous linear empirical cdf vs. theoretical cdf
for the Method of True Diameters with Rounding applied to Protocol
10 with likelihood maximizing values dM = 27.2866 mm, a = 0.2861,
and b0 = 2.0788. The L2 norm of the difference between the two cdfs is
∆RFP = 00849. (∆RF = 0.1457.)

the two cdf’s compared to the value obtained for the likelihood-maximizing parameters

and that the NNLL deteriorated only slightly. However, these distances are so small

that visually the fit between the two cdf’s for the L2 distance minimizing parameters is

almost indistinguishable from that in Figure 11. Again, for the purpose of comparison

to the other methods we have already considered, we computed the L2 norm of the

distance between the empirical cdf and theoretical cdf as well and found that ∆RF =

0.14402, which was nearly identical to the value we obtained by minimizing ∆RF in

Section 6.2.2 (i.e. 0.1.4398.)

Table 3 summarizes our results for Protocol 10. Of the maximum likelihood esti-

mators, we see that we obtain the best likelihood with L2 norm closest to the possible

minimum by using the distribution of rounded profiles.
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Protocol 10 Parameters
Method NLLL L2 distance dM (mm) a b

Expected L∗EH = 2.8864 ∆EH = 0.7558 26.808 0 0.7858
Diameters LEH = 2.9930 ∆∗EH = 0.7073 25.323 0 5.6379

True L∗TF = 2.4393 ∆TF = 0.1603 27.429 0.2636 1.4487
Diameters LTF = 2.4426 ∆∗TF = 0.1440 26.520 0.2956 5.4099

True L∗RF = 2.4136 ∆RFP = 0.0849 27.287 0.2861 2.0788
Diameters LRF = 2.4146 ∆∗RFP = 0.0826 26.4642 0.2942 5.2491

w/ Rounding ∆RF = 0.1457

Native Parameters
Method θ γ0/β γ0ρ

Expected NA 0.8542 1.2726
Diameters NA 0.8542 1.2726

True 0.2258 0.8567 0.6903
Diameters 0.2522 0.8531 0.1848

True 0.2449 0.8561 0.4811
Diameters 0.2509 0.8528 0.1905

w/Rounding

Table 3. Summary of parameters for Protocol 10

6.3. Protocol 17

The data in Douglas’ Protocol 17 come from a female who died of metastatic

breast cancer at age 81. The size of the primary tumor was not recorded, but it was

known to have been removed by a mastectomy five years prior to her death. Thus

W = 81 and V = 76. Metastases were measured by slicing the liver into l = 5 mm

sections. The counts of diameters of the observed circular profiles were reported as

n1 = 19, n2 = 18, n3 = 10, n4 = 7, n5 = 17, n6 = 7, n7 = 5, n8 = 4, n9 = 2, n10 =

4, n11 = 0, n12 = 3, n13 = 0, n14 = 0, n15 = 1, n16 = 0, n17 = 0, n18 = 0, n19 = 0, n20 =

0, n21 = 0, n22 = 0, n23 = 0, n24 = 0, n25 = 1, where ni indicates the number of circular

profiles observed to have diameter of i mm (rounded to the nearest mm.)

6.3.1. Method of Expected Diameters. Using (4.6), we convert the data from

Protocol 17 to obtain the values shown in Table 4.

We again used the maximum likelihood method to estimate the parameters for the

full model by employing a Matlab routine based on the non-linear simplex method to
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Count 19 18 10 7 17 7 5 4 2
Profile Diameter
(mm)

1 2 3 4 5 6 7 8 9

Expected
Diameter (mm)

2.781 3.351 4.071 4.878 5.739 6.636 7.556 8.494 9.444

Count 4 0 3 0 0 1 0 0
Profile Diameter
(mm)

10 11 12 13 14 15 16 17

Expected
Diameter (mm)

10.402 11.368 12.339 13.314 14.292 15.273 16.256 17.242

Count 0 0 0 0 0 0 0 1
Profile Diameter
(mm)

18 19 20 21 22 23 24 25

Expected
Diameter (mm)

18.229 19.217 20.206 21.196 22.188 23.180 24.172 25.166

Table 4. Expected diameters (in mm) of metastases for the patient in
Protocol 17.

minimize the negative log-likelihood. Because of the discontinuity in the pdf at dA,

we searched exhaustively with dA restricted first below dm, then between dm and the

smallest observed metastasis size, then between successive metastasis sizes, and finally

with dA restricted between the largest metastasis size and dM . We then examined the

minimum NNLL, LEF (dA, dM , a, b0, b1), found in each sub-interval.

When dA was restricted to lie between dm = 0.5 mm and the smallest expected

diameter (2.781 mm) or between the two smallest expected diameters (2.781 and 3.351

mm), the likelihood degenerated into the IISMG Model in (4.10). Using (5.13), (5.14),

and (5.15), we found that v = 19/98 ≈ 0.19388, a = 0.47814, and b0 = 37.7731 and

then determined that γ1 = 3.4400 year−1.

Comparing the theoretical cdf for the IISMG model to the empirical cdf, we found

that the L2 norm of the difference between the two was ∆EG = 0.3324.

When dA was restricted to lie between the two largest expected diameters (24.17

and 25.17 mm) the likelihood degenerated into the CSPT Model in (4.10). Using (5.7),

(5.8), and (5.6), we found that γ1 = 4.7616 year−1, v = 1
98
≈ 0.010204, b1 = 0.18194,
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Figure 12. Q = V − T as a function of σ for the CSPT model applied
to Expected Diameters from Protocol 17.

(a) CSPT (b) IISMG

Figure 13. Graphs of empirical and theoretical cdfs for the CSPT and
IISMG models with likelihood maximizing parameters applied to Proto-
col 17.

and ρ = 1.154284763 years. Using equation (5.9), we solved numerically for Q as a

function of σ and obtained the graph shown in Figure 12.

Comparing the theoretical cdf for the CSPT model to the empirical cdf, we found

that the L2 norm of the difference between the two was ∆EC = 1.2133.

Plots of the empirical and theoretical cdfs for the maximum likelihood fit of the

CSPT and IISMG models are shown in Figure 13.
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(a) dA (b) dM (c) a

(d) b0 (e) b1

Figure 14. Graphs of NNLL profile functions for maximum likelihood
parameters dA, dM , a, b0, and b1 for the Method of Expected Diameters
applied to Protocol 17 .

After the two cases where infinite likelihood was anticipated because of model

degeneration, we found that the lowest value of the NNLL was LEF = 2.0522 which

was obtained when dA = 3.3515 mm, dM = 27.1484 mm, a = 0.2497, b0 = 0.5579, and

b1 = 3.4771. Figure 14 shows graphs of the negative log-likelihood profile functions as

the individual parameters are varied which indicate that we have achieved a minimum.

When we compute the L2 norm of the difference between the empirical cdf of

expected diameters and theoretical distribution of tumor diameters we obtain ∆EF =

0.2161. Figure 15a shows a plot of the two cdfs together.

For comparison, when we fit the model by minimizing the L2 norm of the difference

between the empirical and theoretical cdfs we obtain a minimum L2 norm of ∆∗EF =

0.15506 when dA = 3.5589 mm, dM = 25.16568 mm, a = 0.50169, b0 = 1.26704, and

b1 = 1.592763. Graphs of the L2 norm profile functions as the individual parameters are

varied around their optimal values help to confirm that we have reached a minimum
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(a) Maximum Likelihood (b) Minimum L2 Distance

Figure 15. Graphs of empirical and theoretical cdfs for the Method of
Expected Diameters. Plot (A) shows the Full model with likelihood
maximizing values values dA = 3.3515 mm, dM = 27.1484 mm, a =
0.2497, b0 = 0.5579, and b1 = 3.4771. The L2 norm of the difference
between the two cdfs is 0.2161. Plot (B) shows the Full model with
L2 distance minimizing values dA = 3.5589 mm, dM = 25.166 mm,
a = 0.50169, b0 = 1.26704, and b1 = 1.592763 × 10−11. The L2 norm
of the difference between the two cdfs is 0.1551.

and are shown in Figure 16. Note the monotonicity of the profile function for dM

indicating that the minimum L2 distance between the empirical and theoretical cdfs is

achieved as dM approaches its smallest possible value (the largest expected diameter.)

The graph of the empirical and theoretical cdfs together is shown in Figure 15b.

As with Patient A, the IISMG and CSPT models show poor fit. As with Patient

10, we notice that even at minimum L2, there is still a divergence between the two

cdfs in the lower ranges, although it is better for Protocol 17 because of the added

flexibility afforded by γ1. In this case, all 19 profiles of diameter 1 mm were converted

to the diameter 2.781 mm, whereas, in reality, observations of profile diameters with

diameter 1 mm would have come from tumors with diameters in a range from 0.5 mm

5.5 mm. We also note that tumors of diameter less than the 5 mm section width can

escape detection and are therefore under-represented in the empirical cdf.
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(a) dA (b) dM (c) a

(d) b0 (e) b1

Figure 16. Plots of the L2 norm profile functions for the difference
between the empirical and theoretical cdfs for expected diameters for
the L2 norm minimizing parameter set. The graph for dM reflects the
fact that dM cannot be smaller than the largest expected diameter. The
L2 norm is seen to decrease as dM approaches the maximum expected
diameter obtained from the data.

6.3.2. Method of True Diameters. As was noted in (5.16) and (5.17), the

method of True Diameters produces infinite likelihood as dA approaches the largest

observed profile diameter from above and as dA approaches each of the observed diam-

eters of 1, 2, 3, 4, and 5 mm. In the case of Patient A, the infinite likelihood was caused

by the pdf transitioning from continuous to mixed discrete/continuous and we were

able to switch to the mixed CSPT and IISMG models in order to estimate parameters.

In the case of the Method of True Diameters with Protocol 17, the spike in the pdf

is not carrying a fixed weight and so we can’t produce a mixed discrete/continuous

model to allow us to fit parameters.
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6.3.3. Method of True Diameters with Rounding. Although the Method of

True Diameters fails, the Method of True Diameters with Rounding, which compen-

sates for the fact that Douglas rounded tumor profile diameters to the nearest 1 mm

by using the distribution described in section 4.4.3, is bounded and can be used to

find optimal parameter sets. Starting with the Full model and maximiizing likelihood

led the model to decay into the Heavy-Seeding/Long-latency (HSLL) model described

in Section 3.1.3 and Appendix B.4. We found the minimum NNLL of L∗RS = 2.3604

occurred when dA = 4.9464 mm, dM = 35.0011 mm, a = 0.7854, and b1/b0 = 0.5121.

Graphs of the NNLL profile functions are displayed in Figure 17 and indicate that we

have reached a minimum. A comparison graph of the piecewise linear empirical cdf

with the theoretical cdf is shown in Figure 18a. The fit is visually very good and we

compute the L2 distance between the two cdfs to be ∆RSP = 0.0706. For the purpose

of comparison to the previous cases, we also computed the L2 norm of the distance

between the empirical (piecewise constant) cdf and the theoretical cdf and found that

∆RS = 0.1289

Finally, we estimated model parameters by minimizing ∆RSP . The model again

degenerated into the HSLL model and we obtained the minimum value ∆RSP = 0.05651

when dA = 6.407 mm, dM = 33.3799 mm, a0 = 0.8465 and b1/b0 = 0.8978. Graphs

of the L2 norm profile functions as dA, dM , a, and b1/b0 are varied individually are

shown in Figure 19 and corroborate that this is a minimum. Graphs of the empirical

piecewise linear cdf and the theoretical cdf are shown in Figure 18b and show a slight

improvement over the maximum likelihood plot in Figure 18a, particularly in the 2-4

mm range. The NNLL is slightly worse at 2.3675. Again, for the purpose of comparison

to the other methods we have already considered, we computed the L2 norm of the

distance between the empirical (piecewise constant) cdf and theoretical cdf and found

that ∆RS = 0.1224.
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(a) dA (b) dM

(c) a (d) b1/b0

Figure 17. Graphs of NNLL profile functions for maximum likelihood
parameters dA, dM , a, and b1/b0 for the Method of True Diameters with
Rounding with the HSLL model applied to Protocol 17 .

Table 5 summarizes our results for Protocol 17. Of the maximum likelihood estima-

tors, we have the lowest value of the L2 norm when we use the Heavy-Seeding/Long-

Latency model with the True Diameter method.
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(a) Maximum Likelihood (b) Minimum L2 Distance

Figure 18. Graphs of piecewise continuous empirical cdfs and theo-
retical cdfs for the Method of True Diameters with Rounding. Plot
(A) shows the HSLL model with likelihood maximizing values values
dA = 4.9464 mm, dM = 35.0011 mm, a = 0.7854, and b1/b0 = 0.5121.
The L2 norm of the difference between the two cdfs is ∆RSP = 0.0706.
Plot (B) shows the HSLL model with L2 distance minimizing values
dA = 6.4071 mm, dM = 33.3799 mm, a = 0.8,and b1/b0 = 0.8978. The
L2 norm of the difference between the two cdfs is ∆RSP = 0.05651.

Protocol 17 Parameters
Model NLLL L2 distance dA (mm) dM (mm) a b0 b1

CSPT L∗EC = 2.9795 ∆EC = 1.2133 21.1657 21.1657 ∞ ∞ 0.18194
IISMG L∗EG = 2.3952 ∆EG = 0.3324 2.7808 ∞ 0.47814 37.7731 ∞
Exp. D LEF∗ = 2.0522 ∆EF = 0.2161 3.3515 27.1484 0.2497 0.5579 3.4771

Full LEF = 2.3834 ∆EF∗ = 0.1551 3.5589 25.16568 0.50169 1.26704 1.592763
Round L∗RS = 2.3604 ∆RSP = 0.0706 4.9464 35.0011 0.7854 b1/b0 = 0.5121
HSLL ∆RS = 0.1289

LRS = 2.3675 ∆∗RSP = 0.05651 6.407 33.3799 0.8465 b1/b0 = 0.8978
∆RS = 0.1224

Native Parameters
Model NNLL L2 distance γ0 year−1 γ1 year−1 Q years ρ years σ year−1

CSPT L∗EC = 2.9795 ∆EC = 1.2133 0 4.7616 Q = f(σ) 1.1543
IISMG L∗EG = 2.3952 ∆EG = 0.3324 ∞ 3.4400 NA 0 ∞
Exp. D L∗EF = 2.0522 ∆EF = 0.2161 22.1367 3.5520 0.2835 0.08097 5.5266

Full LEF = 2.3834 ∆∗EF = 0.1551 4.5104 3.5879 1.301 0.1750 2.2628
Round L∗RS = 2.3604 ∆RSP = 0.0706 1.9384 3.7855 3.0383 ∞ 1.5223
HSLL ∆RS = 0.1289

LRS = 2.3675 ∆∗RSP = 0.0565 3.5380 3.9408 1.3996 ∞ 3.1764
∆RS = 0.1224

Table 5. Summary of parameters for Protocol 17
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(a) dA (b) dM

(c) a (d) b1/b0

Figure 19. Graphs of L2 distance profile functions for minimum L2 dis-
tance parameters dA, dM , a, and b1/b0 for the Method of True Diameters
with Rounding with the HSLL model applied to Protocol 17 .
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CHAPTER 7

Results and Conclusions

7.1. Comparison of the methods of parameter estimation.

In finding parameter estimates for Patient A, we saw that (as expected) the full

model degenerated to the mixed discrete/continuous CSPT and IISMG models. Nei-

ther provided a compelling fit to the data, and so we resorted to a compromise max-

imum likelihood that provided finite likelihood but with much better fit between the

empirical and theoretical cdfs (though the L2 norm of 0.1885 obtained at this compro-

mise maximum likelihood location is not nearly as good as the minimum possible L2

norm, which was 0.1014, see Table 1 in Section 6.1.)

In the discussion that follows of our findings for Patient A, we will report the val-

ues of identifiable biological parameters that come from the compromise maximum

likelihood estimation and from minimizing the L2 norm of the distance between the

theoretical and empirical cdfs. These values are:

(1) Compromise Likelihood maximization: γ0 = 9.6649 year−1, γ1 = 2.6749 year−1,

T = 73.736 years, ρ = 0.02177 years, β = 87.3637 year−1, θ = 0.05789 (L∗V F = 2.3843,

∆V F = 0.1885)

(2) L2 distance minimization: γ0 = 3.0301 year−1, γ1 = 2.7439 year−1, T = 73.2875 years,

ρ = 0.1550 year, β = 32.3592 year−1, θ = 0.1053 (LV F = 2.4740, ∆∗V F = 0.1014).

In the case of Protocol 10, we found the Method of True Diameters to be vastly

superior to the Method of Expected Diameters in terms of both increasing the model-

based maximum likelihood of observations and dramatically improving the fit to the

observed data, see Table 3 in Section 6.2. Another advantage of the Method of True

Diameters over the Method of Expected Diameters is that it did not lead to degener-

ation of the model of cancer progression into its Homogeneous submodel. Taking into
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account the rounding involved in reporting the values of cross-sectional diameters of

liver metastases led to further improvement of the likelihood and L2 distance between

the theoretical and empirical cdfs. However, the improvement was not as significant

as that due to switching from the Method of Expected Diameters to the Method of

True Diameters.

In the case of Protocol 17, we saw that when using the method of expected diame-

ters the likelihood tended to infinity as the model degenerated into either the CSPT or

IISMG case. Although the likelihood was infinite, neither model provided a compelling

fit when the theoretical and empirical cdfs were compared. (See Table 5 in Section

6.3.) This leads us to discount these points of infinite likelihood as due to the mixed

discrete/continuous nature of the CSPT and IISMG models. The third runner up after

these two cases (with dA held away from x1 and xn) provided a better fit (with finite

likelihood.)

A more difficult problem occurred when we used the method of True Diameters

without rounding because the likelihood approached infinity not only for dA near the

smallest and largest profile diameters, z1 and zn, but also for dA near the four other

observed profile diameters closest to z1. This made parameter estimation using this

method essentially meaningless.

When the method of True Diameters with Rounding was used, we obtained a much

better fit to the data. The results of parameter estimation with this method were

also very consistent. Whether we maximized likelihood or minimized the L2 distance

between the empirical and theoretical cdfs, the NNLLs were 2.36 and 2.37 while the

L2 norms were 0.122 and 0.129, respectively. In these cases we saw that the model

parameters approach the HSLL model (ρ →∞) with γ1

γ0
greater than 1, γ0 = 1.9 and

3.6 year−1, γ1 = 3.75 and 3.95 year−1, disease onset occurring at 1.4 and 3.1 years

before resection, and σ = θβ being 1.5 and 3.2 year−1, respectively.

In the discussion that follows of our findings for Protocols 10 and 17, we will only

report the values of identifiable biological parameters found from using the Method of
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True Diameters with Rounding. For Protocol 10, these values are:

(1) Likelihood maximization: θ = 0.2449, γ0/β = 0.8561 and γ0ρ = 0.4811 (L∗RF =

2.4136, ∆RFS = 0.08493)

(2) L2 distance minimization: θ = 0.2509, γ0/β = 0.8528 and γρ = 0.1905 (LRF =

2.4426, ∆∗RF = 0.0826). Of note is a good agreement between the estimates of param-

eters θ and especially γ0/β obtained by the two very different methods of parameter

estimation.

For Protocol 17, these values are:

(1) Likelihood maximization: γ0 = 1.9384 year−1, γ1 = 3.7855 year−1, Q = 3.0383 years

(T = 72.9717 years), ρ = ∞, σ = θβ = 1.5223 (L∗RS = 2.3604, ∆RS = 0.1289,

∆RFS = 0.0706)

(2) L2 distance minimization: γ0 = 3.5380 year−1, γ1 = 3.9408 year−1, Q = 1.3996 years

(T = 74.6004 years), ρ =∞, σ = θβ = 3.1764 (LRF = 2.3675, ∆∗RSS = 0.05651)

7.2. Stem-like cancer cells

For both Patient A and Protocol 10, we obtained estimates of θ. The estimates

were relatively small for Protocol 10 (0.244 and 0.251) and very small for Patient A

(0.058 and 0.105.) These small values of parameter θ suggest that the rate of metastasis

shedding off the primary tumor grows much slower than the size of the primary tumor.

Because the said rate is proportional to the number of metastasis-producing cells within

the primary tumor, the subpopulation of such cells was also growing much slower than

the entire cancer cell population. This points, if only indirectly, to the existence of

a small subpopulation of stem-like cancer cells that drives cancer progression and

metastasis.

Because the size of the primary tumor in the case of Protocol 17 was not known, we

could not estimate θ separately, but we did obtain estimates of θβ that were between

1.5 and 3.2. If the size, S, of the primary tumor had been known, we would have

calculated β = logS
V−T and then obtained θ by computing θ = σ

β
= σ(V−T )

logS
From this we
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can see that the largest value of θ would occur when S was at the minimum detectable

size. Although tumors with diameters as small as 1 mm can occasionally be detected

by mammography, the median detectable size with mammography is at a diameter of

about 7.5 mm [31]. This would mean that in the case of Protocol 17, that θ could be

as high as 0.78 to 0.81 (if resected when detected at 1 mm) but, more typically, 0.53 to

0.55 (if resected when detected at 7.5 mm) or lower. Because the publication date of

Douglas’ paper was 1971 and the patient in Protocol 17 was diagnosed six years prior

to death, the primary diagnosis occurred no later than 1965, and probably even earlier.

Because mammography was not developed until the late 1950’s [10], it is likely that

it was not used to diagnose the patient in Protocol 17, in which case the tumor would

have been large enough to detect by a physical exam. Recall that Patient A’s primary

tumor was resected at the much larger volume of 10.3 cm3. If Protocol 17’s primary

tumor had been that large at resection, then θ would be between 0.44 and 0.47.

7.3. Suppression of metastatic growth by the primary tumor

We can gain some insight into the effect the primary tumor might have on the

growth rate of metastases by examining the ratio γ0/β. For Patient A, our two esti-

mates of γ0/β were 0.11 and 0.09, meaning that while the primary tumor was in place,

the rate of growth of bone metastases was about one tenth of the rate of growth of

the primary tumor in the breast tissue. For Protocol 10, the estimated ratio, γ0/β,

of the rate of growth of liver metastases to the rate of growth of the primary tumor

was about 0.85. Because we don’t know the size, S, of Protocol 17’s primary tumor

at the time of resection, we cannot find β. But if, as discussed above, we take 0.47

as a reasonable estimate of θ, we can obtain β from σ/θ and this leads to the two

estimates γ0/β = 0.60 and 0.52. Some of this difference may be explained by the dif-

ference in tissue type (bone versus breast in the case of Patient A, liver versus lung

in the case of Protocol 10, and liver versus breast in the case of Protocol 17.) On

the other hand, even the largest metastases in each case (Patient A, Protocol 10, and
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Protocol 17) were still relatively small (diameters of about 35 mm, 25 mm, and 25 mm

respectively.) Hence, at the time of survey, their metastases were most likely still in

the exponential phase of their growth in which case one might expect the rate of their

growth to be quite high. This points to the possibility of suppression of the growth of

metastases by the primary tumor in each case.

7.4. Acceleration of metastatic growth by primary tumor resection

The ratio γ1/γ0 compares the growth rate of metastases after primary tumor re-

section to the growth rate before.

For Patient A, the growth rate of metastases went down after resection. When we

used the maximum likelihood method, the growth rate fell from γ0 = 9.6649 year−1 to

γ1 = 2.6749 year−1. As we have seen, the maximum likelihood estimates are sensitive

to the discontinuity in the pdf that is controlled by γ0, and we can take the large

drop with a degree of skepticism. When we minimized the L2 distance between the

empirical and theoretical cdfs, we found that the growth rate decreased only slightly

from γ0 = 3.03 year−1 to γ1 = 2.74 year−1. After primary tumor resection, Patient A

is known to have taken tamoxifen, which works by suppressing the growth of estrogen

receptor positive breast tissue and this could explain the decrease in growth rate.

For Protocol 10, the primary tumor was not resected, so we cannot estimate γ1, but

for Protocol 17, the growth rate of metastases showed an increase from γ0 either 1.94 or

3.54 year−1 to γ1 either 3.8 or 3.9 year−1 respectively. The patient in protocol 17 had

breast cancer, but she almost certainly did not receive tamoxifen because tamoxifen

was only first synthesized in 1966 [45] and clinical trials did not start until 1971 [24],

the year of publication of Douglas’ paper.
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7.5. Duration of metastatic latency

For Patient A , the two methods of parameter estimation provided estimates of

ρ = 0.022 and 0.16 year, which correspond to average latencies of 1 and 8 weeks,

respectively.

For Protocol 17, both methods of parameter estimation selected the HSLL model,

where ρ = ∞. In this model, large numbers of metastases find their way to suitable

host sites (q is large), but very few actually begin to develop. Under this model, the

rate of metastasis inception grows exponentially with rate θβ until the time of resec-

tion. Because of the large pool of dormant metastases, after resection, the intensity of

metastasis inception remains essentially constant.

For Protocol 10, we could not obtain a direct estimate of ρ. However, for primary

small cell lung cancer (the type of cancer experienced by the patient in Protocol 10)

the tumor doubling times has been estimated in the literature to vary within the limits

of 25-217 days [23] while a representative average value of 86.3 days was reported in

[1]. This places the rate, β, of primary tumor growth within the interval between 1.17

and 10.12 year−1 with a representative value of 2.93 year−1. Since the ratio γ0/β was

estimated to be about 0.85 we find that the rate, γ0, of growth of liver metastases varied

between 0.99 and 8.60 year−1 and its representative value is 2.49 year−1. Using the

mean, 0.336, of our two above estimates as an estimate of parameter γ0ρ we conclude

that the expected duration of metastatic latency was somewhere between 2 weeks and

4 months with the representative value of 1.6 months.

Although the duration varied widely among the three patients, we can see that

metastatic latency was appreciable for all three.

7.6. Timing of cancer onset.

For Patient A, our estimates show that the onset of the primary tumor occurred

at a time, T , of either 73.736 or 73.288 years of age, meaning that onset occurred at

either 3 or 9 months prior to the detection of the primary tumor.
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For Protocol 10, using the estimates of parameter β derived from the literature

described in the previous section, we conclude based on formula (2.20) that the onset

of the primary tumor occurred between 2.8 and 24 years prior to the death of the

patient with the representative value being 9.6 years.

For Protocol 17, our estimates show that the onset of the primary tumor occurred

at a time T or either 72.97 or 74.60 years of age, meaning that disease onset occurred

3.04 or 1.40 years prior to detection of the primary tumor.

7.7. Primary Tumor Growth Rates and Progression Time

Of concern in our parameter estimates are the relatively high values obtained for

the growth rate, β, and the relatively short times from disease onset to diagnosis,

particularly in the case of Patient A. In this case, we obtained tumor progression times,

Q = V − T, of 0.3 and 0.7 years, that seem too small and our likelihood maximizing

primary tumor growth rate, β, is unrealistically high with a doubling time of 2.9 days.

This may point to a shortcoming of using an exponential model for primary tumor

growth. (There is some evidence that points to other growth models [4], including

Gompertz growth [27].)

Note that parameters for Patient A were reported in [20] where a NNLL of LV F =

2.43 was obtained with V − T = 32.2 years, β = 0.717 year−1, γ0 = 0.083 year−1,

γ1 = 2.676 year−1, θ = 0.025, ρ = 79.52 years and ∆V F = 0.122. These parameters

clearly represent only a local maximum of the likelihood; however, they do achieve a

reasonable compromise between likelihood, goodness of fit, and biological plausibility.

7.8. Was the primary tumor detectable at inception of the first metastasis?

For Patient A, the largest metastasis was measured to be of size 22.96 cm3 at the

time of survey. Using (2.9), we calculate based on the two methods of parameter

estimation that the time of inception of the largest metastasis was 5 or 35 days after

the onset of the primary tumor. Using the respective estimates of β, we find that
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the at the time of inception of the first metastasis, the primary tumor was 3.25 · 10−9

or 2.23 · 10−8 cm3, which would be roughly 3 or 22 cells, respectively. A tumor of

this size would certainly be undetectable. Looking forward to the time of primary

tumor detection, the first metastasis would have been either 1.13 ·10−8 (from likelihood

maximization) or 6.48 · 10−9 cm3 (from L2 minimization), which would correspond to

11 or 6 cells, respectively. Thus, at the time of primary tumor diagnosis, the largest

metastasis would have certainly been undetectable as well. In summary, for Patient A

it would have been impossible to detect the primary tumor before metastatic disease

had begun, and by the time the primary tumor was detected, metastatic disease had

begun but would have been undetectable. Of course, applying an exponential law (or

any other deterministic law) of growth to a small cell population (in this case just a

handful of cells) could be misleading. But for this patient, the chance of preventing

metastatic disease was so minute that our qualitative conclusion would most likely be

the same should a more realistic stochastic model of tumor growth be utilized.

For Protocol 17, we cannot compute the size of the primary tumor at the time of

inception of the first metastasis, but we can compute the size of the first metastasis

at the time the primary tumor was discovered. Using (2.9) again, we calculate that

the time of inception of the largest metastasis (cross-sectional diameter 25 mm at the

time of metastasis survey) was 371 or 189 days after the onset of the primary tumor.

At the time of primary tumor diagnosis, the first metastasis would have been growing

either 2.01 or 0.88 years, respectively, and would have reached a size of 4.93 · 10−8

or 2.26 · 10−8 cm3, which would be roughly 49 or 23 cells, respectively, and at least

18 smaller metastases would have also begun to grow. So, as with Patient A, at the

time of diagnosis of the primary tumor, metastatic disease would have started and yet

have been undetectable. We make the same caveat about using predictions of just a

few cells from a deterministic model of cellular growth, but we feel confident that our

qualitative result is correct.
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Answering this question for Protocol 10 requires a little more analysis. First, con-

sider a metastasis with true diameter D. Then the inception age, U , for this metastasis

is given by

(7.1) U = V − 3γ−1
0 log

D

dc
,

where dc = 0.009 mm is the diameter of a single oat cancer cell. Assuming that the

primary tumor originated from a single clonogenic cell we find that the size of the

primary tumor at age U was exp[β(U − T )] which in view of (2.2) and (7.1) equals

(
dS
dc

)3(
dc
D

)3β/γ0

so that the diameter of the primary tumor was

(7.2) Dp = dS(
dc
D

)β/γ0

Note that, surprisingly, this estimate depends only on the ratio γ0/β, which is an

identifiable model parameter. Estimating the diameter of the largest liver metastasis

by its expected value computed through formula (4.6) we get D = Dmax = E(25) =

25.323 mm in which case formula (7.2) yields Dp = 0.0092 mm. Thus, at the time

of the first metastasis inception the primary tumor was extremely small and certainly

undetectable. Furthermore, for the smallest metastasis with the expected diameter

D = Dmin = E(1) = 3.724 mm we find that Dp = 0.0876 mm, i.e. even at the

later time of inception of the smallest detected metastasis the primary tumor was still

microscopic and undetectable. These estimates of Dp are so small as to correspond to a

primary tumor of just a few cells, in which case a deterministic model of growth would

not be very accurate. Still, we can say that even if we had used a more appropriate

stochastic model of cellular growth, the qualitative result would be correct, i.e., the

primary tumor would have been undetectable at the time of metastasis inception.

Thus, removal of the primary tumor by surgery or radiation would not have had
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the desired curative effect. In fact, excision of the primary tumor could have even

accelerated metastasis growth as discussed in Chapter 1 and as it appears to have

done for the patient in Protocol 17.

7.9. Summary

One aim was to develop a mathematical and statistical framework for applying our

model of cancer progression to data on metastic volumes or profile diameters. In the

case of profile diameter data, we found that the method of true diameters with rounding

was superior to the method of expected diameters. Along the way we discovered some

pitfalls that arise when applying maximum likelihood methods with a discontinuous

pdf.

Another aim was to use our model to answer questions about the natural history

of cancer. We saw some evidence for stem-like cancer cells in the small values of θ

obtained Patient A and Protocol 10. We were not able to obtain θ for protocol 17, but

we were able to bound θ above by 0.81 and perhaps by as low as 0.41.

Our results corroborate observations that the progression of cancer is more “non-

linear” than that envisioned by Virchow and Halstead. Rather than a slow spatial

spread from primary tumor to lymph nodes and then finally to metastases in distant

sites, metastases actually begin to circulate very early in the progression of the dis-

ease. In all three of our cases metastasis formation occurred very soon after the onset

of the primary tumor. We have also seen evidence that cancer does not behave like a

local disease in the sense that removal of the primary tumor can cause a change in the

behavior of the disease at metastatic sites. In particular, our results from Protocol 17

indicate that the primary tumor can suppress the growth of metastases and its removal

can cause a jump in the rate of metastasis growth.

Finally, we saw that metastatic latency has an appreciable effect with metastases

continuing to form weeks, months, or even years after the primary tumor has been

removed.
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As we analyze these cases, it is important to consider that cancer progression is

patient-specific. As cancer researcher Bernard Fisher observed, even within a seemingly

narrow class of cancers, like breast cancer, there is still a tremendous heterogeniety of

tumor types and courses of metastatic progression [13]. When we consider that the

three patients we have analyzed ultimately lost their battle with cancer, it should not

surprise us to find in retrospect that their prognosis was dire; that is, that the onset of

metastatic disease was early and that resection of the primary (in the case of Protocol

17) lead to an exacerbation of metastatic disease. Neither should we extrapolate that

treatment of the primary tumor is hopeless in all cases; many patients enjoy long

remissions and new adjuvant therapies may augment the benefits of the excision of the

primary.
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APPENDIX A

Some Useful Results Concerning Poisson Processes

A.1. Definition of a Poisson process

A Poisson process of non-negative locally-integrable intensity λ(t) is an integer-

valued stochastic process X(t), t ≥ 0 such that

(i) X(0) = 0,

(ii) for t > 0, the random variable X(t) has the Poisson distribution

Pr (X (t) = k) =
(Λ(t))k e−Λ(t)

k!
for k = 0, 1, . . . ; where Λ(t) =

∫ t

0

λ(u)du and

(iii) for any time points t0 = 0 < t1 < t2 < · · · < tn, the process increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1) are independent random variables.

It is possible to use ii) and iii) to obtain an alternate version of ii) that applies to

the number of arrivals between two times:

(ii’) for t ≥ 0 and s > 0, the random variable X(t + s) − X(t) has the Poisson

distribution

Pr (X (t+ s)−X (t) = k) =
(Λ (t+ s)− Λ (t))k

k!
e−(Λ(t+s)−Λ(t)) for k = 0, 1, . . . .

Claim. Properties i), ii), and iii) of a Poisson Process are equivalent to properties

i), ii’), and iii).
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Proof. That ii’) and i)⇒ ii) is clear if we set t = 0 in ii’) and apply i). The proof

that ii) and iii) ⇒ ii’) uses strong mathematical induction on k. We first observe that

(A.1)

Pr (X (t+ s) = k) =
k∑
j=0

Pr (X (t+ s)−X (t) = k − j|X (t) = j) Pr (X (t) = j)

independence︷︸︸︷
=

k∑
j=0

Pr (X (t+ s)−X (t) = k − j) Pr (X (t) = j)

Step 1: If k = 0, then (A.1) becomes

Pr (X (t+ s) = 0) = Pr (X (t+ s)−X (t) = 0) Pr (X (t) = 0)

and solving for Pr(X(t+ s)−X(t) = 0) gives

Pr (X (t+ s)−X (t) = 0) =
Pr (X (t+ s) = 0)

Pr (X (t) = 0)
=

(Λ (t+ s))0 e−Λ(t+s)0!

0! (Λ (t))0 e−Λ(t)
= e−(Λ(t+s)−Λ(t))

=
(Λ (t+ s)− Λ (t))0 e−(Λ(t+s)−Λ(t))

0!

so that ii’) holds when k = 0.

Step 2: If k ≥ 1, solving (A.1) for Pr(X(t+ s)−X(t) = k) gives

(A.2) Pr (X (t+ s)−X (t) = k)

=
Pr (X (t+ s) = k)

Pr (X (t) = 0)
−

k∑
j=1

Pr (X (t+ s)−X (t) = k − j) Pr (X (t) = j)

Pr (X (t) = 0)

By ii), we know that

(A.3)
Pr (X (t+ s) = k)

Pr (X (t) = 0)
=

(Λ (t+ s))k e−Λ(t+s)

k!e−Λ(t)
=
e−(Λ(t+s)−Λ(t))

k!
(Λ (t+ s))k .

Assuming that for 0 ≤ j < k,

Pr (X (t+ s)−X (t) = j) =
(Λ (t+ s)− Λ (t))j

k!
e−(Λ(t+s)−Λ(t))
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we have

(A.4)
k∑
j=1

Pr (X (t+ s)−X (t) = k − j) Pr (X (t) = j)

Pr (X (t) = 0)

=
k∑
j=1

(Λ (t+ s)− Λ (t))k−j

(k − j)!
e−(Λ(t+s)−Λ(t)) (Λ (t))j

j!

e−Λ(t)

e−Λ(t)

=
k∑
j=1

(Λ (t+ s)− Λ (t))k−j (Λ (t))j

j! (k − j)!
e−(Λ(t+s)−Λ(t)).

Using the binomial theorem, we have

e−(Λ(t+s)−Λ(t))

k!
(Λ (t+ s))k =

e−(Λ(t+s)−Λ(t))

k!
[(Λ (t+ s)− Λ (t)) + Λ (t)]k

=
e−(Λ(t+s)−Λ(t))

k!

k∑
j=0

k!

j! (k − j)!
(Λ (t+ s)− Λ (t))k−j (Λ (t))j.

Therefore the expression in (A.4) can be rewritten as

k∑
j=1

Pr (X(t+ s)−X(t) = k − j) Pr(X(t) = j)

Pr(X(t) = 0)

=
e−(Λ(t+s)−Λ(t))

k!
(Λ(t+ s))k − −e

−(Λ(t+s)−Λ(t))

k!
(Λ(t+ s)− Λ(t))k ,

which, in view of (A.2) and (A.3) implies that

Pr (X(t+ s)−X(t) = k) =
(Λ(t+ s)− Λ(t))k

k!
e−(Λ(t+s)−Λ(t)).

By strong mathematical induction, property ii’) follows for all non-negative integers

k. �

A.2. Joint distribution of the time of occurrence of events in a Poisson

process given their number

Our goal is to prove the following theorem.
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Theorem 1. For a Poisson process X(t) with time-dependent locally integrable

non-negative rate λ(t), the pdf of the occurrence times given the number, n, of events

at time t is

(A.5) fW1···Wn|X(t)=n (w1, ..., wn) =

n!
n∏
i=1

λ (wi)(∫ t
0
λ(s)ds

)n
for t ≥ wn > wn−1 > · · · > w1 > 0 and zero otherwise

For brevity, we can write

fW1···Wn|X(t)=n (w1, ..., wn) = n!ω(w1) · · ·ω(wn), where ω (w) =
λ (w)∫ t

0
λ(s)ds

, ω ∈ (0, t].

In view of the theorem, it is clear that because there are n! rearrangements of the

ordered recurrence times W1,W2, . . . ,Wn, if we consider the occurrence times without

regard to order, then the pdf of the unordered occurrence times U1, U2, . . . , Un is

fU1···Un|X(t)=n (u1, ..., un) =

n∏
i=1

λ (ui)(∫ t
0
λ(s)ds

)n
where u1, u2, . . . , un ∈ (0, t] are distinct numbers. Thus the unordered occurrence times

are equidistributed with a random sample from the distribution with pdf

(A.6) ω(u) =
λ (u)∫ t

0
λ(s)ds

, u ∈ (0, t].

We begin the proof of Theorem 1 with the following definitions. We say that a

closed box, P , is “positioned at x” (or “x is in P ’s southwest corner”) if the point

x = (x1, x2, . . . , xn) is such that x ∈ P and that for any point p = (p1, p2, . . . , pn) ∈ P ,

x1 ≤ p1, x2 ≤ p2, . . . , xn ≤ pn.

For a measurable set A ⊂ Rn, we denote the Lebesgue measure of A by |A|.

Recall that a Vitali covering of a set E is a covering V such that for each x ∈ E

and δ > 0, there is a set V ∈ V such that x ∈ V and the diameter of V is non-zero and
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less than δ. The Vitali Covering Theorem [5] says that given a measurable set E ⊂ Rn

with finite Lebesgue measure and given a collection, V , of closed boxes in Rn that is

a Vitali covering for E, there exists a finite or countably infinite disjoint subcollection

{Uj} ⊆ V such that |E \ (∪iUi)| = 0.

In order to prove the theorem, we need the following lemma:

Lemma 1. Let W = (W1,W2, . . . ,Wn) be a random vector supported on an open

set G ⊂ Rn (i.e. Pr (W ∈ G) = 1.) If there is a non-negative measurable function f on

G such that
∫
G
fdx = 1 and for almost every point x ∈ G,

(A.7) lim
diam(P )→0

Pr(W ∈ P )

|P |
= f (x) ,

where the limit is taken as the diameters of boxes P positioned at x shrink to zero,

then f is the pdf of W.

Proof. We need to show that for any open box Q ⊂ G,

Pr(W ∈ Q) =

∫
Q

fdx.

Let D be the set of all points in Q at which

lim
diam(P )→0

Pr(W ∈ P )

|P |
= f (x)

does not hold and set Q′ = Q \D. Let ε > 0. For every x ∈ Q′, let Kx be the set of all

closed boxes K with “southwest corner” at x for which K ⊂ Q and∣∣∣∣Pr (W ∈ K)

|K|
− f (x)

∣∣∣∣ < ε

|Q|
.

Now set K =
⋃
x∈Q′
Kx.

It is easy to check that our covering K is a Vitali covering of Q′. Thus, by the

Vitali Covering Theorem, we can find a disjoint countable subcollection {Kj} ⊂ K,

such that |Q′ \ (∪jKj)| = 0, and, because D is a set of measure zero, |Q \ (∪jKj)| =

|(Q′ ∪D) \ (∪jKj)| = 0.
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Because of our choice of covering,

∣∣∣∣∣∣Pr

(
W ∈

⋃
j

Kj

)
−
∫
⋃
j
Kj

f (x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∑
j

Pr (W ∈ Kj)−
∑
j

∫
Kj

f (x) dx

∣∣∣∣∣
=

∣∣∣∣∣∑
j

∫
Kj

Pr (W ∈ Kj)

|Kj|
dx−

∑
j

∫
Kj

f (x) dx

∣∣∣∣∣ =

∣∣∣∣∣∑
j

∫
Kj

[
Pr (W ∈ Kj)

|Kj|
− f (x)

]
dx

∣∣∣∣∣
<
∑
j

∫
Kj

ε

|Q|
dx =

ε

|Q|
∑
j

|Kj| =
ε

|Q|

∣∣∣∣∣⋃
j

Kj

∣∣∣∣∣ =
ε

|Q|
|Q| = ε.

Thus, due to the arbitrariness of ε,

Pr

(
W ∈

⋃
j

Kj

)
=

∫
⋃
j
Kj

f (x) dx.

Therefore, since
⋃
j

Kj ⊂ Q, we have
∫
Q
f (x) dx =

∫⋃
j
Kj
f (x) dx = Pr

(
W ∈

⋃
j

Kj

)
≤

Pr (W ∈ Q) for all boxes Q ∈ G.

To show the reverse inequality, suppose that Pr (W ∈ Q0) >
∫
Q0
f (x) dx for some

box Q0 ⊂ G. Because the boundary of Q0 is a set of measure 0,∫
Q0

f (x) dx =

∫
Q0

f (x) dx < Pr (W ∈ Q0) ≤ Pr
(
W ∈ Q0

)
.

Because G\Q0 is open, we can find a countable collection of disjoint open boxes

Qi, i = 1, 2, 3, . . . , such that G\Q0 =
∞⋃
i=1

Qi and thus G = Q0 ∪
∞⋃
i=1

Qi . Now we see

that

1 = Pr (W ∈ G) = Pr

(
W ∈ Q0 ∪

∞⋃
i=1

Qi

)
= Pr

(
W ∈ Q0

)
+
∞∑
i=1

Pr (W ∈ Qi)

≥ Pr
(
W ∈ Q0

)
+
∞∑
i=1

∫
Qi
f (x) dx >

∫
Q0
f (x) dx+

∞∑
i=1

∫
Qi
f (x) dx =

∫
G
f (x) dx = 1

which is a contradiction. Thus it must be that

Pr (x ∈ Q) =

∫
Q

f (x) dx
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for every open box Q ⊂ G and this completes the proof of the lemma. �

In order to prove the theorem, we apply the foregoing lemma in the case where the

random vector W = (W1,W2, . . . ,Wn) is the vector of times of occurrence of the first

n events of the Poisson process.

First, we we will use induction on n to show that for the function

(A.8) f (v1, v2, ..., vn) =

n!
n∏
i=1

λ (vi)(∫ t
0
λ (s) ds

)n , t ≥ vn > · · · > v2 > v1 ≥ 0

and the open set G defined by

G = {(x1, x2, . . . , xn)|0 < x1 < x2 < x3 < · · · < xn < t},

we have ∫
G

fdw =

∫ t

0

∫ vn

0

· · ·
∫ v2

0

f (v1, v2, ..., vn) dv1 · · · dvn−1dvn = 1.

Let In denote the iterated integral,

(A.9) In (vn) ≡
∫ vn

0

· · ·
∫ v3

0

∫ v2

0

λ (v1)λ (v2) · · ·λ (vn−1) dv1dv2 · · · dvn−1

Claim: For every integer n ≥ 2,

In (vn) =
1

(n− 1)!

(∫ vn

0

λ (s) ds

)n−1

Step 1: If n = 2, then (A.9) reduces to

I2 (v2) =

∫ v2

0

λ (v1) dv1,

which is equal to

1

(2− 1)!

(∫ v2

0

λ (s) ds

)2−1

.

and therefore the claim holds when n = 2.
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Step 2: Assume that the claim is true for n = k. Then, in the case when n = k+ 1,

we have to investigate the integral

Ik+1 =

∫ vk+1

0

∫ vk

0

· · ·
∫ v3

0

∫ v2

0

λ (v1)λ (v2) · · ·λ (vk−1)λ (vk) dv1 · · · dvk−1dvk

which can also be written in the form

Ik+1 (vk+1) =

∫ vk+1

0

λ (vk) Ik (vk) dvk

By our supposition,

Ik (vk) =
1

(k − 1)!

(∫ vk

0

λ (s) ds

)k−1

,

and we obtain

Ik+1 (vk+1) =

∫ vk+1

0

λ (vk)
1

(k − 1)!

(∫ vk

0

λ (s) ds

)k−1

dvk.

Letting u (vk) =
∫ vk

0
λ (s) ds so that du = λ (vk) dvk, the integral becomes

Ik+1 (vk+1) =

∫ u(vk+1)

0

1

(k − 1)!
uk−1du =

u (vk+1)k

k!
− 0 =

1

k!

(∫ vk+1

0

λ (s) ds

)k
and thus the claim holds by mathematical induction.

Applying this to the function in (A.8), we have

∫
G

fdw =
n!
∫ t

0
· · ·
∫ v3

0

∫ v2

0
λ (v1)λ (v2) · · ·λ (vn) dv1dv2 · · · dvn(∫ t

0
λ (s) ds

)n
=

n!In+1 (t)(∫ t
0
λ (s) ds

)n =
n! 1

n!

(∫ t
0
λ (s) ds

)n
(∫ t

0
λ (s) ds

)n = 1.

We next verify that the random vector (W1,W2, . . . ,Wn) satisfies, conditional on

X(t) = n, condition (A.7) of the above Lemma with function f given by (A.8). Given

a point x = (x1, x2, . . . , xn) ∈ G , if P is a closed box positioned at x with diamP <

mini 6=j |xi−xj|, then P has the form P = {(p1, p2, . . . , pn)|x1 ≤ p1 ≤ x1+∆x1, . . . , xn ≤
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pn ≤ xn + ∆xn} where for each i ∈ {1, . . . , n}, ∆xi is such that (xi, xi + ∆xi) ∩

(xj, xj + ∆xj) = ∅ for i 6= j.

Now Pr(W ∈ P,X(t) = n) is Pr(x1 < W1 ≤ x1 + ∆x1, x2 < W2 ≤ x2 +

∆x2, . . . , xn < Wn ≤ xn + ∆xn,Wn+1 > t) which can be re-written in terms of our

Poisson process as

Pr(X(x1) = 0, X(x1 + ∆x1)−X(x1) = 1, X(x2)−X(x1 + ∆x1) = 0, . . . ,

X(xn + ∆xn)−X(xn) = 1, X(t)−X(xn + ∆xn) = 0).

Applying the property of independence of numbers of events occurring on non-overlapping

intervals we obtain

Pr(W ∈ P,X(t) = n) =

Pr(X(x1) = 0) · Pr(X(x1 + ∆x1)−X(x1) = 1) · Pr(X(x2)−X(x1 + ∆x1) = 0)

· · ·Pr(X(xn + ∆xn)−X(xn) = 1) · Pr(X(t)−X(xn + ∆xn) = 0)

= Pr(X(x1) = 0)·Pr(X(t)−X(xn+∆xn) = 0)·

[
n∏
i=2

Pr(X(xi)−X(xi−1 + ∆xi−1) = 0)

]

·

[
n∏
i=1

Pr(X (xi + ∆xi)−X (xi) = 1

]

= e−
∫ x1
0 λ(s)ds·e−

∫ t
xn+∆xn

λ(s)ds

[
n∏
i=2

e
−
∫ xi
xi+∆xi−1

λ(s)ds

]
·

[
n∏
i=1

(∫ xi+∆xi

xi

λ (s) ds

)
e
−
∫ xi+∆xi
xi

λ(s)ds

]

= e−
∫ t
0 λ(s)ds ·

n∏
i=1

∫ xi+∆xi

xi

λ (s) ds.

129



Thus,

Pr(W ∈ P |X(t) = n)

|P |
=

Pr(W ∈ P,X(t) = n)

|P |Pr(X(t) = n)
=

e−
∫ t
0 λ(s)ds ·

[
n∏
i=1

∫ xi+∆xi
xi

λ (s) ds

]
|P | (

∫ t
0 λ(s)ds)

n

n!
e−

∫ t
0 λ(s)ds

=

n!

[
n∏
i=1

∫ xi+∆xi
xi

λ (s) ds

]
|P |
(∫ t

0
λ (s) ds

)n =
n!(∫ t

0
λ (s) ds

)n ·
[

n∏
i=1

∫ xi+∆xi
xi

λ (s) ds

∆xi

]

By the fundamental theorem of calculus (see, e.g. [43]),

lim
∆xi→0

∫ xi+∆xi
xi

λ (s) ds

∆xi
=

d

dxi

∫ xi

0

λ (s) ds = λ (xi)

for almost all xi. Therefore

lim
diam(P )→0

Pr(W ∈ P |X(t) = n)

|P |
=

n!(∫ t
0
λ (s) ds

)n · n∏
i=1

λ(xi) =

n!
n∏
i=1

(λ(xi))(∫ t
0
λ (s) ds

)n
Applying Lemma 1 now shows that Theorem 1 holds.

A.3. Independent Classification of Events

Suppose that each event of a Poisson process with rate λ(t) is classified randomly

as being exactly one of n types, and suppose that the probability of an event being

classified as type-i, i = 1, 2, ..., n, may depend on the time at which it occurs. Further,

suppose that if an event occurs at time s, then, independently of all else, it is classified

as being a type-i event with probability Pi(s) where
n∑
i=1

Pi (s) = 1 and each Pi is a

measurable function.

Theorem 2. If Xi(t) represents the number of type-i events that occur by time

t, i = 1, 2, . . . , n, then Xi(t), i = 1, . . . , n are independent Poisson random variables

having respective cumulative rates Λi (t) =
∫ t

0
Pi (s)λ (s) ds.
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Proof. We compute the joint distribution of the Xi(t) by conditioning on X(t) =

m, the number of events to have occurred by time t:

(A.10) Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn}

=
∞∑
m=0

Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn|X (t) = m}Pr {X (t) = m}

= Pr

{
X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn|X (t) =

n∑
i=1

ki

}
Pr

{
X (t) =

n∑
i=1

ki

}
,

the other conditional probabilities in the sum having been zero when m 6=
∑n

i ki. In

order to simplify notation, we will use m =
∑n

i ki for the remainder of the proof.

Consider an arbitrary event that occurred in the interval [0, t]. If it had occurred

at time s, then the probability that it would be a type-i event is Pi(s). By Theorem 1,

the occurrence time distribution has pdf λ(s)∫ t
0 λ(u)du

, s ∈ (0, t] . Thus the probability that

it would be a type-i event is

pi =

∫ t

0

Pi (s)
λ (s)∫ t

0
λ (u) du

ds =

∫ t
0
Pi (s)λ (s) ds∫ t

0
λ (s) ds

=
Λi(t)

Λ(t)

where Λ(t) =
∫ t

0
λ(s)ds.

Hence, Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn|X (t) = m} has the multinomial

distribution

Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn|X (t) = m} = m!
n∏
i=1

pkii
ki!
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Then by (A.10),

Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn (t) = kn} = m!
n∏
i=1

pkii
ki!

Pr {X (t) = m}

= m!

(
n∏
i=1

pkii
ki!

)
Λ(t)m

m!
e−Λ(t) =

(
n∏
i=1

(piΛ(t))ki

ki!

)
e−Λ(t) =

(
n∏
i=1

(piΛ(t))ki

ki!

)
e
−
∫ t
0

(
n∑
i=1

Pi(s)

)
λ(s)ds

=

(
n∏
i=1

(piΛ(t))ki

ki!

)
e
−
∫ t
0

(
n∑
i=1

Pi(s)

)
λ(s)ds

=
n∏
i=1

Λi(t)
kie−(

∫ t
0 Pi(s)λ(s)ds)

ki!
=

n∏
i=1

Λi(t)
kie−Λi(t)

ki!

from which we observe that each of the Xi(t) is independent and has a Poisson distri-

bution

Pr {Xi (t) = ki} =
(Λi (t))

ki e−Λi(t)

ki!

with cumulative rate

Λi (t) =

∫ t

0

Pi (s)λ (s) ds

as desired. �

A.4. Intensity of a filtered Poisson process

Theorem 3. If events are initiated according to a Poisson process with intensity

λ(t) but are removed (or filtered out) independently of each other with fixed probability

1− q, then the resulting stochastic process is Poisson with intensity qλ(t).

Proof. Let X(t) be the number of events initiated by time t > 0 in the original

Poisson process and let Xs(t) be the corresponding number of events that have survived

the filtering process. We now verify that the conditions given in the definition of the

Poisson process hold for Xs(t) (see section A.1)

i) Because X is a Poisson process, X(0) = 0. Because 0 ≤ Xs(t) ≤ X(t), we must

have Xs(0) = 0 as well.
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ii) Applying Theorem 2, we designate an event as type-1 if it is not filtered out

and as type-2 if it is filtered out. In this context, Xs(t) = X1(t) and P1(s) = q and

P2(s) = 1− q and we see that

Pr {Xs (t) = k} =

(∫ t
0
P1 (s)λ (s) ds

)k
k!

e−
∫ t
0 P1(s)λ(s)ds

so that Xs(t) has a Poisson distribution with mean

Λs (t) =

∫ t

0

P1 (s)λ (s) ds =

∫ t

0

qλ (s) ds = q

∫ t

0

λ (s) ds

iii) For independence, let Ii = [ti−1, ti] , i = 1, 2, ..., n denote disjoint time intervals

and call an event type-i, i = 1, ..., n if it occurs in Ii and is not filtered out, or of

type-(n+ 1) otherwise. Denote the respective number of arrivals of events of type-i up

to time t by Xi(t), i = 1, 2, ..., n, n+ 1. Then the probability that an event is classified

as type-i is

Pi (s) =

 q, s ∈ Ii

0 otherwise
, i = 1, 2, ..., n,

and the probability an event is classified as type-(n+ 1) is

Pn+1 (s) =

 1− q, s ∈ ∪ni=1Ii

1 otherwise
.

By Theorem 2, the counts X1(t), X2(t), ..., Xn(t), are independent, so

Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn(t) = kn} =
n∏
i=1

Pr {Xi (t) = ki} .

In the context of our filtered Poisson process, for some time t beyond intervals Ii, i =

1, .., n, the event that Xi(t) = ki is the event that there are ki arrivals in interval Ii

and thus the number of arrivals in disjoint intervals is independent. Thus Xs(t) is a

Poisson process with rate

λs (t) =
d

dt
Λs (t) =

d

dt
q

∫ t

0

λ (s) ds = qλ (t) .
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A.5. Intensity of a delayed Poisson process

Theorem 4. If events are initiated according to a Poisson process with intensity

ν(t) with individual events delayed by random times that are independent between

themselves as well as of the Poisson process and identically distributed with pdf f ,

then the resulting stochastic process for completed events is Poisson with intensity

λ (t) =
∫ t

0
ν (s) f (t− s) ds.

Proof. Let X(t) denote the number of events initiated by time t > 0 in the

original Poisson process and let Xp(t) be the corresponding number of events that

have completed their delay by time t. We now verify that Xp(t) satisfies the conditions

of a Poisson process.

i) Because X is a Poisson process, X(0) = 0. Because 0 ≤ Xp(t) ≤ X(t), we must

have Xp(0) = 0 as well.

ii) At time t, we designate an event that has occurred by time t as type-1 if it

has completed its delay by time t and as type-2 if it has not completed its delay.

Note that if X1(t) is the number of type-1 events that have occurred by time t, then

X1(t) = Xp(t). The probability that an event that occurs at time s will complete its

delay by time t > s is

P1(s) = Pr {delay ≤ t− s} = F (t− s) ,

where F is the cdf associated with pdf f . Applying Theorem 2, Xp(t) (which is also

X1(t)) has a Poisson distribution with mean

Λp (t) =

∫ t

0

P1 (s) ν (s) ds =

∫ t

0

F (t− s) ν (s) ds.

iii) For independence, let Ii = [ti−1, ti] , i = 1, 2, ..., n denote disjoint time intervals.

We classify an event as type-i, i = 1, ..., n if it completes its delay in Ii, and as type-

(n + 1) otherwise. Denote the respective number of arrivals of events of type-i up to
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time t by Xi(t), i = 1, 2, ..., n, n+ 1. Denote the delay by the random variable Y. If an

event occurs at time s, then the probability that it will be classified as type-i, i = 1, ..., n

is the probability that s + Y ∈ Ii which is the probability that ti−1 < s + Y < ti or

ti−1 − s < Y < ti − s which is Pi(s) = F (ti − s)− F (ti−1 − s).

Because the time intervals are disjoint, we see that Pn+1(s) +
∑n

i=1 Pi(s) = 1 and

thus by Theorem 2, the counts X1(t), X2(t), ..., Xn(t), are independent, and

Pr {X1 (t) = k1, X2 (t) = k2, ..., Xn(t) = kn} =
n∏
i=1

Pr {Xi (t) = ki} .

In the context of our delayed Poisson process, for some time t, the event that Xi(t) = ki

is the event that there are ki completions in interval Ii by time t and thus the numbers

of completions in disjoint intervals are independent.

Thus Xp(t) is a Poisson process with rate

λp(t) = d
dt

Λp (t) = d
dt

∫ t
0
F (t− s) ν (s) ds = F (t− t)ν(t) +

∫ t
0
f (t− s) ν (s) ds

=
∫ t

0
f (t− s) ν (s) ds

as desired. �
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APPENDIX B

Catalog of Models

Writing our models in terms of the “Native Parameters” γ0, γ1, σ = θβ, ρ, Q =

V −T , and R = W−V , preserves the original meaning of these quantities and is helpful

in understanding limiting cases and submodels whereas writing them in terms of the

“Simplifying Parameters” a0 = θβ
γ0

, b0 = 1
ργ0

, b1 = 1
ργ1

, A = eγ1R and M = eγ0Q+γ1R

helps clarify the functional form of the models. For ease of reference, we present a

catalog of models in both forms.

B.1. Full Model

B.1.1. γ1 ≤ log(m)/R.

B.1.1.1. Native Parameters.

p (x) = (C1x)−1

[(
e(γ0Q+γ1R)

x

) σ
γ0

−
( x

e(γ0Q+γ1R)

) 1
γ0ρ

]
,m ≤ x ≤ eγ0Q+γ1R

C1 =
γ0

σ

[(
eγ0Q+γ1R

m

)σ/γ0

− 1

]
+ γ0ρ

[( m

eγ0Q+γ1R

)1/γ0ρ

− 1

]
.

B.1.1.2. Simplifying Parameters.

p (x) = (C1x)−1

[(
M

x

)a
−
( x
M

)b0]
,m ≤ x ≤M

C1 =
1

a

[(
M

m

)a
− 1

]
+

1

b0

[(m
M

)b0
− 1

]
.

B.1.1.3. Cdf.

P (x) = (C1)−1

 γ0

σ

(
e(γ0Q+γ1R)

m

) σ
γ0 − γ0

σ

(
e(γ0Q+γ1R)

x

) σ
γ0

+ργ0

(
m

e(γ0Q+γ1R)

) 1
γ0ρ − ργ0

(
x

e(γ0Q+γ1R)

) 1
γ0ρ

 ,m ≤ x ≤ eγ0Q+γ1R
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B.1.2. γ1 > log(m)/R.

B.1.2.1. Native Parameters.

p (x) =


(C2x)−1 γ0

γ1

(
x

eγ1R

) 1
γ1ρ

(
eσQ − e−

Q
ρ

)
, m ≤ x ≤ eγ1R,

(C2x)−1

[(
eγ0Q+γ1R

x

) σ
γ0 −

(
x

eγ0Q+γ1R

) 1
γ0ρ

]
, eγ1R < x ≤ eγ0Q+γ1R

C2 = γ0ρ
(
eσQ − e−

Q
ρ

)[
1−

( m

eγ1R

) 1
γ1ρ

]
+
γ0

σ

(
eσQ − 1

)
+ γ0ρ

(
e−

Q
ρ − 1

)
B.1.2.2. Simplifying Parameters.

p (x) =

 (C2x)−1 b1
b0

(
x
A

)b1 [(M
A

)a − ( A
M

)b0] , m ≤ x ≤ A,

(C2x)−1
[(

M
x

)a − ( x
M

)b0] , A < x ≤M

C2 =
1

b0

[(
M

A

)a
−
(
A

M

)b0][
1−

(m
A

)b1]
+

1

a

[(
M

A

)a
− 1

]
+

1

b0

[(
A

M

)b0
− 1

]
B.1.2.3. Cdf Native Parameters.

P (x) =



(C2)−1 γ0ρ
[(

x
eγ1R

) 1
γ1ρ −

(
m
eγ1R

) 1
γ1ρ

] (
eσQ − e−

Q
ρ

)
, m ≤ x ≤ eγ1R,

(C2)−1 γ0


1
σ
eσQ + ρe−

Q
ρ − 1

σ

(
eγ0Q+γ1R

x

) σ
γ0

−ρ
(

x
eγ0Q+γ1R

) 1
γ0ρ

+ρ
[
1−

(
m
eγ1R

) 1
γ1ρ

] (
eσQ − e−

Q
ρ

)
 , eγ1R < x ≤ eγ0Q+γ1R

B.1.2.4. Cdf Simplifying Parameters.

P (x) =


(C2)−1 1

b0

[(
x
A

)b1 − (m
A

)b1] [(M
A

)a − ( A
M

)b0] , m ≤ x ≤ A

(C2)−1


1
a

(
M
A

)a
+ 1

b0

(
A
M

)b0 − 1
a

(
M
x

)a − 1
b0

(
x
M

)b0
+ 1
b0

[
1−

(
m
A

)b1] [(M
A

)a − ( A
M

)b0]
 , A ≤ x ≤M
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B.2. Instantaneous Seeding

B.2.1. γ1 ≤ log(m)/R.

B.2.1.1. Native Parameters.

p (x) = C3x
− σ
γ0
−1
,m ≤ x ≤ eγ0Q+γ1R

C3 =
σ/γ0

m
− σ
γ0 − (eγ0Q+γ1R)

− σ
γ0

.

B.2.1.2. Simplifying Parameters.

p (x) = C3x
−a−1,m ≤ x ≤M

C3 =
a

m−a −M−a .

B.2.1.3. Cdf.

P (x) = C3
γ0

σ

(
m
− σ
γ0 − x−

σ
γ0

)
,m ≤ x ≤ eγ0Q+γ1R

B.2.2. γ1 > log(m)/R.

B.2.2.1. Native Parameters.

p (x) = C4x
− σ
γ0
−1
, eγ1R ≤ x ≤ eγ0Q+γ1R

C4 =
σ/γ0

(eγ1R)
− σ
γ0 − (eγ0Q+γ1R)

− σ
γ0

.

B.2.2.2. Simplifying Parameters.

p (x) = C4x
−a−1, A ≤ x ≤M

C4 =
a

A−a −M−a .
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B.2.2.3. Cdf.

P (x) = C4
γ0

σ

(
e
− γ1σ

γ0
R − x−

σ
γ0

)
, eγ1R ≤ x ≤ eγ0Q+γ1R
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B.3. Homogeneous

B.3.1. γ1 ≤ log(m)/R.

B.3.1.1. Native Parameters.

p (x) = (C5x)−1

[
1−

( x

eγ0Q+γ1R

) 1
γ0ρ

]
,m ≤ x ≤ eγ0Q+γ1R

C5 = γ0Q+ γ1R− logm+ γ0ρ

[( m

eγ0Q+γ1R

) 1
γ0ρ − 1

]
B.3.1.2. Simplifying Parameters.

p (x) = (C5x)−1

[
1−

( x
M

)b0]
,m ≤ x ≤M

C5 = log
M

m
+

1

b0

[(m
M

)b0
− 1

]
B.3.1.3. Cdf.

P (x) = (C5)−1

[
log

x

m
+ γ0ρ

( m

eγ0Q+γ1R

) 1
γ0ρ − γ0ρ

( x

eγ0Q+γ1R

) 1
γ0ρ

]
,m ≤ x ≤ eγ0Q+γ1R

B.3.2. γ1 > log(m)/R.

B.3.2.1. Native Parameters.

p (x) =

 (C6x)−1 γ0

γ1

(
1− e−

Q
ρ

) (
x

eγ1R

) 1
γ1ρ m ≤ x < eγ1R

(C6x)−1
[
1−

(
x

eγ0Q+γ1R

) 1
γ0ρ

]
eγ1R ≤ x ≤ eγ0Q+γ1R

C6 = γ0Q− γ0ρ
(

1− e−
Q
ρ

)( m

eγ1R

) 1
γ1ρ

B.3.2.2. Simplifying Parameters.

p (x) =

 (C6x)−1 b1
b0

[
1−

(
A
M

)b0] ( x
A

)b1 m ≤ x < A

(C6x)−1
[
1−

(
x
M

)b0] A ≤ x ≤M
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C6 = log
M

A
− 1

b0

[
1−

(
A

M

)b0](m
A

)b1
B.3.2.3. Cdf.

P (x) =


(C6)−1 γ0ρ

(
1− e−

Q
ρ

)
e−

R
ρ

(
x

1
γ1ρ −m

1
γ1ρ

)
, m ≤ x < eγ1R

(C6)−1

 log x
m

+ γ0ρ
(
e
γ1R
γ0ρ − x

1
γ0ρ

) (
e−γ0Q−γ1R

) 1
γ0ρ

+γ0ρ
(

1− e−
Q
ρ

)
e−

R
ρ

(
e
R
ρ −m

1
γ1ρ

)
 , eγ1R ≤ x ≤ eγ0Q+γ1R
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B.4. Heavy-Seeding/Long-Latency (HSLL)

B.4.1. γ1 ≤ log(m)/R.

B.4.1.1. Native Parameters.

p (x) = (C7x)−1

[(
eγ0Q+γ1R

x

) σ
γ0

− 1

]
,m ≤ x ≤ eγ0Q+γ1R

C7 =
γ0

σ

[(
eγ0Q+γ1R

m

) σ
γ0

− 1

]
+ logm− γ0Q− γ1R

B.4.1.2. Simplifying Parameters.

p (x) = (C7x)−1

[(
M

x

)a
− 1

]
,m ≤ x ≤M

C7 =
1

a

(
M

m
− 1

)a
+ log

m

M

B.4.1.3. Cdf.

P (x) = (C7)−1

[
γ0

σ

(
eγ0Q+γ1R

m

) σ
γ0

− γ0

σ

(
eγ0Q+γ1R

x

) σ
γ0

− log
x

m

]
,m ≤ x ≤ eγ0Q+γ1R

B.4.2. γ1 > log(m)/R.

B.4.2.1. Native Parameters.

p (x) =


γ0

γ1
(C8x)−1 (eσQ − 1

)
, m ≤ x < eγ1R

(C8x)−1

[(
eγ0Q+γ1R

x

) σ
γ0 − 1

]
, eγ1R ≤ x ≤ eγ0Q+γ1R

C8 = −γ0Q+
(
eσQ − 1

)(γ0

σ
+ γ0R−

γ0

γ1

logm

)
B.4.2.2. Simplifying Parameters.

p (x) =


b1
b0

(C8x)−1 [(M
A

)a − 1
]
, m ≤ x < A

(C8x)−1 [(M
x

)a − 1
]
, A ≤ x ≤M
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C8 = − log
M

A
+

[(
M

A

)a
− 1

](
1

a
+
b1

b0

log
A

m

)
B.4.2.3. Cdf.

P (x) =


γ0

γ1
(C8)−1 (eσQ − 1

)
log x

m
, m ≤ x < eγ1R

(C8)−1

 γ0

σ
eσQ + γ1R− γ0

σ

(
eγ0Q+γ1R

x

) σ
γ0

− log x+ γ0

γ1

(
eσQ − 1

)
log eγ1R

m

 , eγ1R ≤ x ≤ eγ0Q+γ1R
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B.5. Complete Suppression by Primary Tumor (CSPT)

In this case, we must have γ1 > log(m)/R or no metastases will be detectable.

B.5.1. γ1 > log(m)/R.

B.5.1.1. Native Parameters.

p (x) =
(1− v)x−1

(
x

eγ1R

)1/(γ1ρ)

γ1ρ
[
1−

(
m
eγ1R

)1/(γ1ρ)
] , if m ≤ x < eγ1R,

Pr
(
x = eγ1R

)
= v

where

v =

[
1
σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)]
ρ
(
eσQ − e−

Q
ρ

) [
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ 1
σ

(eσQ − 1) + ρ
(
e−

Q
ρ − 1

) .
Given γ1, ρ, and v, (3.12) can be solved for Q in terms of σ and has a unique positive

solution in terms of σ if and only if

0 ≤ σ <
1− v

ρv
(

1−
(

m
eγ1R

)1/(γ1ρ)
) .

When it exists, that solution satisfies

eσQ − 1

e−
Q
ρ − 1

=
σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ v − 1
.

B.5.1.2. Simplifying Parameters.

p(x) =
b1(1− v)x−1

(
x
A

)b1
1−

(
m
A

)b1 , m ≤ x < A

Pr (x = A) = v

where v is the same as in the native parameters case.
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B.5.1.3. Cdf.

P (x) =

 (C9)−1 ρ
[(

x
eγ1R

) 1
γ1ρ −

(
m
eγ1R

) 1
γ1ρ

] (
eσQ − e−

Q
ρ

)
, m ≤ x < eγ1R

1, x = eγ1R
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B.6. Instantaneous Infinite Shedding and Metastasis Growth (IISMG)

In this model, we set σ = aγ0 and ρ = 1
b0γ0

and take the limit as γ0 →∞.

B.6.1. γ1 ≤ log(m)/R.

p (x) = amax−1−a,m ≤ x <∞

B.6.1.1. Cdf.

P (x) = 1−max−a,m ≤ x <∞

B.6.2. γ1 > log(m)/R.

B.6.2.1. Native Parameters.

p (x) = (x)−1
ab0

(
eγ1R

x

)a
a+ b0

, eγ1R < x <∞

and

Pr
(
x = eγ1R

)
=

a

a+ b0

.

B.6.2.2. Simplifying Parameters.

p (x) = (x)−1 a

(
1− a

a+ b0

)(
A

x

)a
, A < x <∞

and

Pr (x = A) =
a

a+ b0

.

B.6.2.3. Cdf.

P (x) = 1−
(

b0

a+ b0

)(
eγ1R

x

)a
, eγ1R ≤ x <∞
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APPENDIX C

Some Computations for the CSPT and IISMG Models

C.1. Proof that Q can be determined from σ in the CSPT model

Claim. Given γ1, ρ, σ > 0 and 0 < v < 1, we can solve the equation

v =

1
σ

(
eσQ − 1

)
+ ρ

(
e−

Q
ρ − 1

)
ρ
(
eσQ − e−

Q
ρ

) [
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ 1
σ

(eσQ − 1) + ρ
(
e−

Q
ρ − 1

)
to obtain a positive value for Q and this solution is unique if

0 < σ <
1− v

ρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] .

If

σ ≥ 1− v

ρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] ,

there is no solution for Q.

Proof. We rewrite eσQ − e−
Q
ρ in the expression for v above as eσQ − 1 + 1− e−

Q
ρ

and then separate terms involving eσQ − 1 and e−
Q
ρ − 1 in order to obtain

eσQ − 1

e−
Q
ρ − 1

=
σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ v − 1
.

The fraction on the left is negative so long as Q 6= 0. The numerator of the fraction

on the right is positive. Therefore, we will only have a solution for Q if

σρv

[
1−

( m

eγ1R

)1/(γ1ρ)
]

+ v − 1 < 0
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and this is equivalent to

σ <
1− v

ρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] .

If we separate the exponentials in our equation for Q, we have

(C.1) eσQ − 1 =
σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

+ v − 1

(
e−

Q
ρ − 1

)
.

If we use k to denote the positive quantity

σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

1− v − σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] ,

then solving (C.1) is equivalent to solving h(Q) = 0 where

h (Q) = eσQ − 1− k
(

1− e−
Q
ρ

)
.

We note that h(0) = 0, h′ (Q) = σeσQ − k
ρ
e−

Q
ρ , and h′′ (Q) = σ2eσQ + k

ρ2 e
−Q
ρ > 0.

It is also true that k > σρ because

1− v
(

m
eγ1R

)1/(γ1ρ)
> 1− v

(
m
eγ1R

)1/(γ1ρ) − v
[
1−

(
m
eγ1R

)1/(γ1ρ)
]
− σρv

[
1−

(
m
eγ1R

)1/(γ1ρ)
]

= 1− v − σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
]

and therefore

1− v
(

m
eγ1R

)1/(γ1ρ)

1− v − σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] > 1

or

k =
σρ
[
1− v

(
m
eγ1R

)1/(γ1ρ)
]

1− v − σρv
[
1−

(
m
eγ1R

)1/(γ1ρ)
] > σρ.

Because σρ < k,

h′ (0) = σ − k

ρ
< 0,
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and therefore h is initially decreasing. Because h(0) = 0, there must exist Qn > 0 such

that h(Qn) < 0. But

lim
Q→∞

h (Q) =∞,

and by the intermediate value theorem, there must exist Q > 0 such that h(Q) = 0.

Suppose that this Q is not unique. Then we can find Q2 > Q1 > 0 such that h(Q2) =

h(Q1) = 0. By Rolle’s theorem, there would exist c1 ∈ (0, Q1) and c2 ∈ (Q1, Q2) such

that h′(c1) = h′(c2) = 0. But h′′ > 0 so h′(c1) < h′(c2), a contradiction. Therefore, Q

must be unique. �

C.2. Proof that g(b1) is decreasing

Claim. The function g(b1) given by

g (b1) =
1

b1

−
log
(
xn
m

)(
xn
m

)b1 − 1

is decreasing

Proof. In order to simplify the expression for g(b1), we set a = xn
m

and ab1 =

et, t ∈ R. Then g(b1) = log a
t
− log a

et−1
= log a

(
1
t
− 1

et−1

)
.

We have to show that h(t) = 1
t
− 1
et−1

is decreasing, i.e. that h′(t) = − 1
t2
− et

(et−1)2 ≤ 0

and that could only happen if t2et ≤ (et − 1)2. Because taking the square root is an

order-preserving operation, the inequality t2et ≤ (et − 1)2 is equivalent to |t|et/2 ≤

|et − 1| which can be written as tet ≤ et − 1 for t ≥ 0 and −tet < 1 − et for t < 0.

These two inequalities could also be written as t/2 ≤ sinh t for t ≥ 0 and sinh t < t/2

for t < 0.

We set α(t) = t/2 and β(t) = sinh(t), and note that α(0) = 0 = β(0) and α′(t) =

1/2 < 1 ≤ cosh t = β′(t). Then when t > 0, α(t) =
∫ t

0
α′(τ)dτ ≤

∫ t
0
β′(τ)dτ = β(t),

so t/2 ≤ sinh t. On the other hand, when t < 0, −α(t) =
∫ 0

t
α′(τ)dτ ≤

∫ 0

t
β′(τ)dτ =

−β(t), so −t/2 ≤ − sinh t so sinh t ≤ t/2. It then follows that g(b1) is decreasing �
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