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BIOKINETICS OF STRONTIUM-90 INJECTED IN NON-HUMAN
PRIMATES USING SAAM SOFTWARE AND IMBA
[ PROFESSIONAL PLUS SOFTWARE

Thesis Abstract - Idaho State University - 2014

This research was intended to examine the efficacy of systemic models for
humans using measured non-human primate bioassay data obtained from studies by
Durbin et al. Twenty-one non-human primates were injected with strontium and were
observed for periods ranging 1 to 7,168 days. The retention activity of strontium in
urine, feces and the skeleton was obtained. These data were evaluated using the
SAAM II software in accordance with ICRP 67. Furthermore, eleven subjects were
analyzed simultaneously and separately, and their Intake was evaluated using the
IMBA software with default parameters and optimized parameters respectively. It was
realized that the optimized parameter using SAAM II software provided good fits
(based on the AIC criterion) between the measured and predicted retention values in
urine, feces, and skeleton, while the default parameter underestimated the measured
retention values. However, the chi-square test indicate that the default and modified
parameters using IMBA provide good fits between measured injected activity and the
predicted activity in urine and feces. For the default parameters, the fraction of
predicted to measured intake activities varied between 0.523 and 2.29. While for the
optimized parameters, the fraction of predicted to measured intake activities varied
between 0.64 and 2.40.

(Work performed with partial support from funding from the National Institute of

Allergy and Infectious Diseases under contract HHSN272201000046C)
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CHAPTER 1: INTRODUCTION

1.1 The Purpose of the Study

The main purpose of this study was to investigate intravenously injected non-
human primate bioassay data generated by Durbin et al. to test the effectiveness of the
ICRP 67 systematic models for humans. A second purpose as appropriate was to optimize
the ICRP 67 transfer rate coefficients for strontium. A tertiary goal of this study was to
examine the efficacy of the model by applying the geometric means of a set of optimized
parameters obtained using SAAM 11 software. This was done employing IMBA
Professional Plus, and comparing predictions of the ICRP default parameters to the
geometric mean of optimized parameters to determine which set of parameters produced

better predictive capability.



1.2 Hypothesis Statement

First Null Hypothesis (H1,0): The ICRP 67 optimized model will not accurately

predict the retention in excretion and skeleton using SAAM 11 software.

First Alternative Hypothesis (H1,a): The ICRP 67 optimized model will

accurately predict the retention in excretion and skeleton using SAAM 11 software.

Decision Rule #1: The data is consistent with Alternative Hypothesis if it is
determined that the AIC and total objective function values for optimized model are less
than the values for default model. If the AIC and total objective function values are

grater, the Null Hypothesis is supported.

Second Null Hypothesis (H2,0): The ICRP 67 default model and optimized
model using IMBA software will not predict the excretion and deposition of *’Sr from

intravenously injected in Rhesus monkeys.

Second Alternative Hypothesis (H2,a): The ICRP 67 default model and
optimized model using IMBA software will predict the excretion and deposition of *°Sr

from intravenously injected in Rhesus monkeys.



Decision Rule #2: The data is consistent with Alternative Hypothesis if the chi-
square (p-value) is less than 0.05. If the p-value is greater than 0.05, the Null Hypothesis

is supported.

Third Null Hypothesis (H3,0): The predicted *’Sr intake of urine and feces data
using default model and optimized model in IMBA software are significantly different

from injected intake.

Third Alternative Hypothesis (H3,a): The predicted *Sr intake of urine and
feces data using default model and optimized model in IMBA software are consistent

with the injected intake.

Decision Rule #3: The data is consistent with Null Hypothesis if the different
between the predicted intake and injected intake is not arbitrarily within 20%. If the

difference is greater than 20%, the Null Hypothesis is supported



Overview
1.3 Non-human Primates Studies

Durbin et al. engaged in a long-term study conducted between the years 1954 and
1983 on *°Sr biokinetics in primates of the Macaca mulatta. The study was conducted in
three different sites: Lawrence Barkeley Laboratory (LBL), the University of Rochester
(UR), and the Delta Primate Center (Delta). The LBL study was in progress from 1954 to
1983, and studied 37 male and female monkeys that were all injected. The UR study was
conducted between the years 1954 and 1964 before moving to the Delta facilities (1964-
1968) studied 10 and 24 *°Sr injected and fed monkeys respectively. In summary, a total
of 71 both male and female, either *’Sr injected or fed monkeys were studied. 61 out of
71 monkeys were *°Sr injected while the rest (10) were *°Sr fed age (Durbin et al, 1993).

Table 1 below summarizes the experimental treatments undertaken by Durbin et
al. on 21 injected Rhesus monkeys and the amounts of activity injected intravenously.
This study focused on the distributions of *’Sr concentrations in injected monkeys as
examined in blood plasma, excreta, and the whole body. With regards to the table (LBL
series), the parameters that were analyzed on the 21 coded monkeys (from Case R7M to
R191M) were: injection method, injection date, deaths (number of days a living post-
injection), the number of days post-injection when serial blood sampling was conducted
days when whole body counts commenced, and percent of *°Sr in plasma otherwise
whole blood. The days post-injection spanned from 1 to 7,168. Blood samples were
drawn from thirteen monkeys regularly post-injection until death. Also, samples were
drawn from five monkeys semiannually; however, this practice commenced at a later

stage after injection. Whole-body counts were conducted for four monkeys, immediately



post-injection, and semiannually thereafter. Additionally, semiannual whole-body counts
were recorded for six other monkeys; however, were started a few years post-injection
whole body count analyses were based on a correlation of the bremsstrahlung radiation
detected externally to that thought to be present in the animals. Bremsstrahlung radiation
in this case generally arose from high velocity of beta radiation incident on mineral bone.
The scope of this evaluation limited itself to the *’Sr plasma, or whole blood
concentration data observed in monkeys between 2 and 13.5 years of age (Durbin et al,
1993).

According to Durbin et al., the concentration of *’Sr in plasma of an entire body
of a monkey was obtained by the benefit of analysis radio technique. The percentage
concentrations of *’Sr (%IDmL™) in the plasma/whole blood of a monkey were
calculated using the data presented in Table 1. The weight of a monkey together with **Sr
concentrations in a blood sample were the essential parameters considered. The results
obtained were expressed as Sr (%ID) in the entire plasma volume. The densities of
plasma and whole blood used to compute these results used the values established for
man specifically, a value of 1.027 g/ml was used for plasma while 1.058 g/ml was used
for the entire blood. The total **Sr in blood plasma could only be obtained after
establishing the total volume of plasma and/or the whole blood volume per unit weight of
a monkey. As reported by Gregerson et al., after they considered a large population of
monkeys (both sexes) with weights ranging from 3 to 7 kilograms it appears that plasma
volume in monkeys is equivalent to 36.4 mL/Kg, the entire blood volume to 54.1 mL/Kg,
and the hematocrit accounted for 0.66 mL/Kg. As for plasma samples, the formula below

was used to calculate the Sr (%ID):



Plasma Sr (%ID) = 36.4 x BW x %ID (sample) x 1.027 x w (sample)” Equation 1
Where: BW = the body weight.

If given sample a whole blood sample, the formula below was used to calculate the Sr
(ID%):

Plasma Sr (%ID) = 36.4 x BW x %ID (sample) x 1.058 x w (sample) ™ x 0.66. Equation 2
The body weight (BW) was measured in kilograms, and the sample weights were in
grams (Durbin et al, 1993).

It is important to note that the entire monkey community in the LBL series
underwent TB diagnosis semiannually. It was during this time that they were weighed,
tranquilized, and blood samples obtained from their bodies. Additionally, their weights
were measured and recorded as they being semiannually whole body counted. If data on
body weight (BW) was omitted, then for the purpose of continuity the missing weight
was estimated via extrapolation of two consecutive recorded weights (Durbin et al, 1993).

The data recorded on coded monkeys from the UR Delta group (i.e. case 301M to
374M) included: the group number or the case number of a monkey, the date when the
monkeys were injected or fed with *°Sr, the days to death after injection or feeding, the
sites where the species died and the location where analysis radio happened, and the time
post-injection or feeding when whole body counting was started. However, as mentioned
previously, this review was limited to the **Sr concentrations in plasma and the whole

blood of injected monkeys (Durbin et al, 1993).



Start day

Injection Death (days ~ Startday  (Whole % "Sr Body
CaseNo method Injection date  post-injection)  (blood) body)
R™M iv 3/16/54 181 4 - 242
R8F iv 4/11/54 3506 - - 3.0
RIM iv 4/16/54 2520 - - 216
RI10F iv 8/8/55 94 - . 44.4
R33F iv 2/21/58 2278 1 . 6.5
R34F iv 2/21/58 1921 1 - 154
R35F iv 2/21/58 2040 1 . -
R27F iv 9/10/58 3159 0° . 113
R28F iv 9/10/58 2087 0 - 16.1
R29F iv 9/10/58 280 0 . 38.9
R32F iv 10/27/59 7168 1 327t 59
R36F iv 2/15/60 4 - - 58.6
R37F iv 2/15/60 1 - - 453
R50F iv 11/13/60 1212 - - 24.6
RSIF iv 11/13/61 441 - - 285
RS52F iv 2/25/61 21 - - 534
R6IM iv 2/25/63 5372 497 2054 2.8
R62M iv 9/25/63 5853 497 2054 1.2
R83F iv 9/13/63 3411 287 1850 23
RIS8M iv 9/9/69 2 - -a 35.3
RI9IM iv 8/8/70 16 0 -a 514

Table 1: List of Monkeys injected intravenously at Lawrence Berkeley Laboratory
(LBL) from 1954 to 1982.



CHAPTER 2: LITREATURE REVIEW

2.1 Strontium Properties

Strontium is a vital chemical element found in Group II (IT A) of the periodic
table. Fundamentally, together with strontium, the entire members of this group including
radium, barium, calcium, magnesium and beryllium among others have a common atomic
structure that make them members of this group (alkaline earth metals). These members
have two electrons on their outer energy level hence the name Group II. On the periodic
table, strontium occupies a central position in the group. Strontium is more reactive than
all the members above it in the group (e.g. beryllium, magnesium and calcium), and less
reactive than all the members that come below it in the group e.g. barium.

The elemental strontium has an atomic number of 38 and an atomic mass of 87.62
amu, and can exist either at 0 or +2 oxidation states. Under ideal environmental
conditions the later oxidation state is steady enough vital for practical use since its
reaction with both water and oxygen is feasible. Strontium boasts a total of 26 isotopes of
which 4 happen naturally. The naturally occurring isotopes including: **Sr (0.56%), **Sr
(9.86%), *"Sr (7.0%) and **Sr (82.58%), are the only stable isotopes, the rest are artificial
synthesized isotopes and Sr-90 are a consequence usually radioactive. Of great
importance in radiology are the isotopes *’Sr and *’Sr. These emanate from a nuclear
fission process of radioactive isotopes (**°Pu, *°U or, ***U) after bombardment with a
high-energy neutron. This process is depicted by the below nuclear equation:

U+'n —» *Sr+°°Sr + other fission by-products. Equation 3



These two radioactive isotopes are both human health concern owing to their potential
carcinogenicity. Nevertheless, between the two isotopes °°Sr is the more radiotoxic due to
its relatively long half-life (twenty-nine years). *°Sr’s half-life dwarfs *’Sr (51 days) by
more than 200 folds. Unlike other radioactive isotopes, strontium decays by isobaric
transition emitting a negatron together with the creation of a progeny product Y-90. The

table below provides a summary of the radiological properties of the various strontium

isotopes (ASTDR, 2004)
Natural
CAS registry abundance Beta energies,
Isotope number (by weight %)  MeV Half-life  Activity, Ci/gram
8y 15758-49-3 0.56 No data Stable No data
%y 13967-73-2  Nodata 1.065° 65days 35,400
%gr 13982-14-4  9.86 No data Stable No data
¥r 13982-64-4  7.00 No data Stable No data
%8sy 14119-10-9  82.58 No data Stable No data
gy 14158-27-1  Nodata 1.495 51 days 27,800
gy 10098-97-2  No data 0.546 29years 143
YISy 14331-91-0  Nodata 2.707 10 hours  3.4x10°
gy 14928-29-1  Nodata 1.911 3hours  1.1x10’

Table 2: Percent Natural Occurrence and Radioactive Properties of Isotopes of Strontium

(ASTDR, 2004).



2.2 Internal Contamination Pathway of Strontium

Currently, anthropogenic activities involving nuclear technology release
negligible amounts of *Sr to the environment and, therefore, do not raise much concern
(EPA, 2002). However, the little Sr released can be incorporated into food substances and
converted into part of the food chain. Nuclear weapons testing in the mid twentieth
century led to the emission of significant amounts of environmental radiostrontium. This
was evident from the substantial drop in environmental concentration of *Sr after the
atmospheric test band treaties. However, the suspension of atmospheric nuclear testing
did not eliminate environmental Sr emissions because releases nuclear plants and from
other plants of the nuclear fuel cycle may occur. Apart from weapon facilities, plants that
reprocess fuels may contribute to the environmental source term of Sr. As may the
utilization of nuclear fission at research reactors and nuclear power plants may lead to Sr-
90 releases into the environment.

The Chernobyl accident led to the emission of substantial quantities of radioactive
%St to the environment. Both local and global *’Sr construction observed as an aftermath
with Chernobyl accident.

Historically the key route of entry of *°Sr into the human body was arguably
through the ingestion of polluted water and food substances. Contaminated air, in
addition, may lead to the uptake of radiostrontium in humans. This occurs either when Sr
particles that have been adsorbed on dust particles are inhaled or when Strontium oxides
are inhaled. However, the hazards associated with ingestion of contaminated food seem
to surpass those related to the inhalation of contaminated air (EPA, 2002). Approximately

twenty to thirty percent of the ingested *’Sr is absorbed in the gut following the intake of

10



Sr-contaminated food while the remaining fraction is excreted (EPA, 2002). Nearly all
of the absorbed *’Sr goes to the bones or the skeletal tissues while the rest is disseminated
to the peripheral tissues such as blood, soft tissues, extracellular fluids, as well as the
surface of the bones. The *°Sr can stay for extended periods of time in these tissues.
When eventually excreted it is expelled in urine or feces (EPA, 2002).

As mentioned earlier, *°Sr’s key route of entry into the human body is through its
incorporation into the food chain. This occurs when grass grows on *’Sr-contaminated
soil. Cows feed on this grass and the strontium becomes absorbed into the cows’
gastrointestinal tract and later on passes into milk. The consumption of such milk,
therefore, leads to the introduction of radioactive Sr into the human body. Strontium, a
radioactive substance decays into °*Y, which is a transitory decay product. Y-90
undergoes a beta decay releasing energy of approximately 0.93 MeV that plays a vital
role in the internal dose of *°Sr. *°Sr is a chemical congener of calcium thereby, making it
a suitable candidate for absorption mechanisms that are similar to calcium. Consequently,
Sr-90 is absorbed, metabolized and integrated into plant and animal tissues. During
female lactation, **Sr that was already incorporated into milk passes a great danger to
breastfeeding children. Such children have high chances of developing leukemia and
cancer of the bones because of the partial substitution of calcium by strontium in their
developing bones (Washington State Department of health, 2002)

Urinalysis is the main method of establishing the levels of strontium in the body.
However, the accuracy of the test is higher when taken immediately after the intake than
when measured some time after the intake (EPA, 2002). In sum, there are five internal

contamination pathways of strontium: inhalation, ingestion, injection, and absorption.

11



2.3 Absorption
2.3.1 Inhalation Exposure

There is ample evidence from case studies of accidents that Sr-90 may be taken into
the body by inhalation. These cases do not provide a clear quantitative account of the
absorption of inhaled Sr in humans, but the discovery of radiostrontium in feces and urine
undoubtedly reveals that the inhalation of radiostrontium leads to its absorption in the
body (ATSDR, 2004).

Animal studies particularly in dogs reveal that the chemical form of the inhaled
strontium greatly influences the rate of absorption. Complexes with a high solubility such
as SrCl, undergo rapid clearance from the lungs. The nasopharyngeal section of the
respiratory tract appears to be responsible for the absorption of soluble strontium. An
experiment by (Cuddihy and Ozog, 1973) observed that 67% of Sr administered as
%3SrCl, to the nasal tract of hamsters was absorbed within the first four hours. Another
63% was absorbed into the nasopharynx (ATSDR, 2004).

2.3.2 Oral Exposure

The fractional absorption of ingested strontium administered to healthy subjects
as SrCl, in food was investigated by ATSDR. They compared quantitatively the
strontium concentration-time profiles from subjects who had ingested strontium and those
who had intravenous injections of strontium. They considered the bioavailability of Sr in
the body following different routes of administration. Another approach compared the
amount of Sr ingested to that excreted in feces. These studies observed that about 20% of

the ingested Sr was absorbed in the alimentary canal (ATSDR, 2004).

12



A difference in the absorption of Sr with changes in the age of the subjects is a
phenomenon that is frequently observed in rat studies. No human data on this changing
Sr absorption rates in humans exists. However, owing to this observation in animal
models and similarities with humans, it is suggested that there is a likely increase in Sr
absorption during the neonatal period in humans. During the rest of the human life cycle,
just as in various animal models, it is thought the fraction of ingested Sr is constant, at
around 20% (ATSDR, 2004).

2.3.3 Dermal Exposure

The experimental data on the dermal exposure to compounds containing Sr does
not give conclusive evidence of systemic toxicity. This implies that there is poor
absorption of Sr from the surface of the skin. However, the integrity of the skin tissues
determines the extent of absorption. An experiment by Ilyin et al. in 1975 demonstrated
that scratched skin allows more absorption than intact skin (ATSDR, 2004).
2.3.3.1 Ingestion

It is possible for strontium to be transmitted across the placenta in a pregnant
female animal and in human subjects. However, only one study demonstrates Sr transfer
across the placenta following inhalation where an intratracheal dose of *’Sr is given to
rats at two weeks of gestation. But there were insignificant differences in Sr absorption
rates in the fetuses of control and experimental rodents. . In addition, Sr gets into human

mammary glands and can be conveyed to infants during lactation (ATSDR, 2004).
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2.4 Distribution:
2.4.1 Inhalation Exposure

There is insufficient information regarding the dispersal of inhaled Sr in humans.
Nevertheless, it can be assumed that inhaled strontium and ingested strontium are
distributed in a similar manner (ATSDR, 2004).
2.4.2 Oral Exposure

The dispersion of orally ingested Sr mimics calcium absorption with nearly all of
the ingested Sr ending up in the bones. This is evident from autopsy reports of human
bone samples, which reveal that Sr absorption is a half of the normal Ca absorption
(ATSDR, 2004).
2.4.3 Dermal Exposure

Dermal exposure to strontium as * SrCl, gets into the patella three hours after
exposure. The same Sr takes about six hours to be detected in the forearm suggesting that

dermal exposure ultimately leads to absorption in the bones (ATSDR, 2004).

2.5 Total Absorption and Excretion via the Alimentary Tract Model

Several aspects including the level of glucose present in blood and the nutritive
value of food modulate the absorption of strontium in human bodies. The presence of
minerals such as calcium, phosphorous and magnesium tend to escalate the rate of Sr
absorption by the tissues. Diets containing high proportions of milk constituents and
vitamin D raise Sr absorption. Fasting plays a vital role in influencing the concentration
of glucose in blood and the rate of Sr absorption. Studies by McAughey et al. observed

that an all night fast doubles the absorption of Sr. This observation is evident after
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comparing the Sr absorption of four subjects who ingested Sr-containing substances after
fasting with the absorption of an individual who ingests Sr after taking breakfast. A three-
fold reduction of calcium intake causes a two-fold increase in Sr absorption.

A comparison of animal and human data on Sr absorption gives similar outcomes.
However, when Sr is administered to rodents as a titanate (SrTi0O;) the rate of absorption
is relatively low and gives a rate of 0.01 in contrast with the rate of 0.1 when Sr is issued
as SrCl (Métivier, et al, 2004).

Age is thought to play a role in the absorption or Sr. A study by Widdowson et al.
in 1960 revealed that the rate of Sr absorption in infants was extremely high at a level of
0.7. It is possible that milk, which is the key diet in infants, contributes to the high levels
of Sr absorption since milk rich diets elevate Sr absorption. However, in children
between the ages of five and fifteen the rate of Sr absorption is similar to that in adults.
Rodent experiments, in addition, reveal an absorption rate of 0.95 in 2-week old rats.
Conversely, the absorption values decline to about 0.74 in a sample of five 22-days old
rats. Therefore, it can be concluded from these two experiments that Sr absorption
declines with an increase in the age of the subject. The probable reason for the high
absorption rates in infants is that there is no delay in the transfer of the absorbed Sr to
blood. This is because of minimal retention of Sr in the walls of the small intestines
(Métivier, et al, 2004).

A systemic biokinetic prototype for alkaline earth metals unequivocally replicates
the excretion of Sr through the gastrointestinal tract. The dispensation of radiostrontium
through an intravenous injection shows that a quarter of the injected Sr is exuded into the

alimentary canal thereby contributing to the endogenous loss of Sr. Excretion through
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bile accounts for a tiny fraction of the entire secretion of Sr into the alimentary canal. The
ICRP biokinetic model for strontium displays the systemic secretion of Sr as the transfer
of blood plasma to the constituents of the large intestines in the upper region of the
alimentary canal. This is a simplified version of the whole process, which clearly

explains the movement of Sr in biological systems (Métivier, et al, 2004).

2.6 Strontium in Bone

Several studies reveal that the rate of uptake and elimination of different types of
radionuclides are greatly influenced by the age of the subject. This is also true for the
uptake of strontium in human body as observed from the examination of thousands of
human skeletons. It is essential to develop dosimetric models that include the relationship
between age and the uptake of the various Sr isotopes in different physical and chemical
form (Leggett et al. 1982).

Strontium and calcium experience similar metabolism. The bone, which is the
main calcium store, is partitioned into two key sections. These are the structural bone that
carries out motorized roles and the metabolic bone that controls calcium quantities in the
extracellular fluids. This model relies on the fact that the skeleton comprises three
compartments, two of which are coupled with the structural bone (bone volume) and the
other compartment that is connected to metabolic processes (surface bone). The bone
volume further consists of three vast parts that are soft, compact and hard bone. This
model assumes that these three compartments are present during all life stages, but their

metabolism differs at various life stages (Leggett et al. 1982).
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Increases and reductions of calcium by the bone volume significantly affect the
metabolism of Sr. The cortical bones (compartment 1) and the cancellous bones
(compartment 2) have little differentiation in terms of structure and function in young
people. Therefore, there are no disparities in their uptake and retention of Sr. However, as
a person grows old, there are distinct dissimilarities between these two compartments in
terms of their Sr uptake and retention. It is thought that the body cannot distinguish
between Ca and Sr during metabolism due to their similarities. However, there is a facet
of discrimination of Sr before it reaches the skeleton, which is accounted for by the
formula k (t) =0.7 exp (-1.2t) +0.2 where ‘t’ is age, and ‘k’ is the bias aspect (Leggett et
al. 1982).

Skeleton age greatly affects bone behavior. Young bones have a rich blood and
water supply that makes them extremely dynamic. Old bones are much more static in
nature because of nearly complete mineralization. Regardless of this change associated
with age, the bone proportion available for exchange of calcium remains constant
throughout the developmental process. Strontium elimination from bones is the same as
calcium removal, which increases with increasing age due to the natural aging process
that causes bone loss. The radioactive decay process of about 0.025 annually also
contributes to Sr loss. Compact bone and cancellous bones show different Sr removal
rates with cancellous bone having a lower rate than compact bone. The product of the
discrimination factor and the fraction of calcium that is absorbed by the bones is the

proportion of Sr that is ultimately retained by bones (Leggett et al. 1982).
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2.7 Biokinetics of Strontium

2.7.1 ICRP 67 Systemic Model for Strontium

The ICRP 67 model is a radionuclide based systemic demonstration of how
various alkaline earth metal elements are thought to translocate while inside the human
body. The common metallic elements to which the model applies include radium, lead,
barium, uranium, and barium. The ICRP model assumes that blood plasma contains a
uniform concentration of calcium. However, this is not practically true since in human
body tissues, calcium exists both in ionic and solid forms. ICRP does not include the red
blood cells (RBC) because the cells do not react with the alkaline earth metals (Leggett et
al. 2008)

The demonstration of the rates of intake and retention of strontium and calcium
have been demonstrated through radio-calcium experiments. Such experiments
demonstrate that on average 0.35 percent of the total radio-calcium intake into an adult
body diffuses into the soft tissues. Plasma retains 0.03 percent of the total adult body
calcium content. Generally the soft tissues are classified into three sections. These
sections include an intermediate turnover section (ST1), a rapid turnover section (STO)
and, a slow turnover section (ST2). The STO body calcium content is about 0.09 percent,
while that of ST1 is approximately 0.26 percent. The concentration of the calcium STO
section is determined by the deposition percentage (F) and the associated half-time (T). A
sufficient period to investigate STO calcium diffusion is thought to be about 124 days

post injection after which various ca/sr ratios change (Leggett et al. 2008).
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An ST2 section in the ICRP model represents non-absorbable calcium due to
tissue dystrophic calcification. Usually, the ST2 is characterized by low absorption of
calcium from the plasma within 124 days after the injection. The test of ST2 is carried
out through manipulation of F and elimination of T using different elements. An
experiment on radio-strontium absorption and retention was carried out on ailing patients
just before they died. The experiment revealed that initially the bones and the soft tissues
had an almost equal proportion of strontium (Leggett et al. 2008).

Modes of strontium kinetics in the soft body tissue are usually based on
comparison of strontium retention in the soft tissue with that of the calcium. The method
assumes that the rate of calcium and strontium deposition percentage is equal. Schlenker
et al. asserts that approximately 1% of the total strontium consumed is retained in the soft
tissues. The STO section of the model contains soluble calcium and the interstitial fluid.
ST1 contains slowly soluble calcium like dystrophic, mitochondria, and cartilage
calcium, ST2 section contains deposits of calcium. The ICRP model does not consider
the kidney and the liver as part of soft body tissues (Leggett et al. 2008).

The ICRP 67 model divides the bone structure into trabecular and cortical
sections. Each of these parts is further divided into bone volume and surface subsections
(Figurel), bone volume is composed of soluble and insoluble pools. The bone surface is
responsible for skeleton deposition. After some time, a part of the bone surface diffuses
into the soluble bone volume while the rest diffuses to the plasma. It is believed that bone
surface can only be recovered from the bone through bone desorption. The rate of
elimination of bone surface from the insoluble bone volume is age dependent but not

subject to the elements used (Leggett et al. 2008).
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An experiment to investigate the absorption and maintenance of the strontium
content in the bone was carried out on incurably patient (Leggett et al. 2008). The results
of the experiment supported general observations that there exists great variation of
strontium in the patients’ bodies at different age groups. The experiments further showed
that the bone - rebuilding rate is higher for individuals below the age 25 compared to the
older individuals. This is because the rate of calcium deposition is higher at younger age
than at old age. Consequently, the strontium retention rate is elevated in younger adult
compared to elderly people. Research indicates that the rate of deposition of radium,
barium, and strontium are similar in the first few hours after injection for skeleton,
trabecular, and cortical bones for all elements (Bligh and Taylor 1963; Kshirsagar et al.
1966, Domanski et al. 1969, 1980). It is argued that about 25% of radium, barium, or
strontium diffusing out of the plasma in an adult is deposited on the bone surface
(Leggett et al. 2008).

The rate of deposition of alkaline earth metals on the either cortical or trabecular
surfaces depends on calcium intake in either bone type. The deposition rate in Trabecular
bone is 1.25 times higher than that of cortical bone (Leggett et al. 1982). Nevertheless,
the average deposition time of alkaline earth metals is not exactly known. Several
experiments have demonstrated that the rate of activity turnover is larger in calcium,
strontium, and barium in that order. The alkaline earth elements are excreted from the
body through faeces and urine. Equally, the rate of element excretion depends on the age
of the subject and length of the element intake (Leggett et al. 2008).

Figure 1 illustrates the human bioknetic model for alkaline earth elements, especially for

strontium. While Table 3 provides the transfer rates for the ICRP 67 strontium model.
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Figure 1: ICRP 67 systemic biokinetic model for alkaline earth elements (ICRP, 1993)
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Rote of transfer between Compartments

Transfer rate (d)

Plasma to STO 7.500
Plasma to Urinary bladder contents 1.730
Plasma to G.I. tract contents 0.525
Plasma to ST1 1.500
Plasma to ST2 0.003
Plasma to Trabecular Surfaces 2.080
Plasma to Cortical Surfaces 1.670
STO to Plasma 2.500
ST1 to plasma 0.116
ST2 to plasma 3.8x 10"
Cortical Surface to Cortical exchangeable Vol. 0.116
Bone Surfaces to plasma 0.578
Non-exchangeable Trabecular Vol. to Plasma 493x10*
Non-exchangeable Cortical Vol. to Plasma 8.21x 107
Trabecular Surface to Trabecular exchangeable Vol. 0.116
Exchangeable Cortical bone vol. to Cortical Surface 43x10°
Exchangeable Trabecular bone vol. to Trabecular Surface 43x10°
Exchangeable Cortical bone vol. to Non-exchangeable cortical vol. 43x10°
Exchangeable Trabecular bone vol. to Non-exchangeable Trabecular vol. 43x10°
Urinary bladder contents to Urine 5.000

G.I. tract contents to Feces 1.000

Table 3: Transfer rates for ICRP 67 biokinetic model for Strontium (ICRP, 1993)
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CHAPTER 3: MATERIALS AND METHODS

3.1 SAAM I

The software that was used in this study was SAAM version II* (University of
Washington). SAAM II, which means simulation, analysis, and modeling software I1, is a
pharmacokinetic analysis software package designed for studies of radioactive
experiments. The software is very popular among biomedical and bioengineering experts.
SAAM II is a dominant instrument in research, education, and project development

(Barrett, 1998).

The system provides help for the biomedical problems and services through
consultation on the use of the software analysis. With the help of the software, an
individual can design compartmental representations, simulate experiments on these

representations, and analyze data (SAAM II help)

Urine and fecal bioassay data for Sr-90 were analyzed simultaneously (and
separately for eleven cases) using SAAM II software, which employed the default
parameters as exemplified in the ICRP 67 to estimate the retention values in urine, feces
and skeleton. The multi compartment models were created on the drawing canvas based
on the ICRP 67 systemic model. In addition, the excretion and skeleton data were
employed in the optimization process with the aid of the Bayesian method available in

SAAM software.

* University of Washington
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3.1.1 SAAM 11 OPERATION

The user can design the model using a compartmental application method, which
uses either by differential equation or numerical application method in analyses. These
approaches allow the user to enter an algebraic equation directly. SAAM 11 is designed in
such a way that it can generate a system of differential equations automatically for each
model in use. The user should identify an experiment on a model by selecting from a
number of experimental building objects that are illustrated as inputs and outputs. After
the user identifies the experiment, SAAM II works out and fits the model to the data

(SAAM 1I help).

The model shown below is used in illustrating the main parts of SAAM II’s model
construction capability, describing its attributes, developing trials and basic operations

such as working out, fitting, and viewing solutions.
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Figure 2: The main screen of SAAM and an example of two- compartment model
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Figure 2 shows the main screen of SAAM II along with a two compartmental
model containing an essential plasma compartment and a swap compartment. The SAAM
IT principle for the transfer coefficients is represented as k (i, j)-k (to, from). Based on
this illustration, k (i, ) is the transfer rate to compartment i from compartment j. The EX1
is an experiment generated in the model through which the exogenous input in it is stated
directly. The input type was bolus and the initial amount was 100 corresponding to 100 %

of initial activity. S1 stands for a sample site (SAAM II help).

An important facet of SAAM II is parameter window; an example of parameter
window is illustrated in Figure 3 below. The user is free to modify the parameter’s type
value. For this study the Bayesian option was chosen. When the Bayesian option is

selected, mathematical functions such as population mean and SD will be computed

(SAAM II help).
Pi Parameters _l_l- | ll
Name Type Current Low Limit High Limit Pop. Mean SD
0.7500 75.0000 7.5000 747 . 5000
kiZ,4) Bay 1.6641 1.5000 150.0000 15.0000  1485.0000
ki3,4) Bay 0.0300 3.000e-004 0.0300 0.0030 0.2970
ki4,1) Bay Z.4566 0.2500 25.0000 2.5000 247.5000
ki4,2) Bay 0.0116 0.0116 1.1600 0.1160 11.4840
ki4,3) Bay 3.800e-005 3.800e-005 0.0038 3.800e-004 0.0376
ki4,6) Bay 3.9778 0.0578 5.7800 0.5780 £7.2220
ki4,8) Bay 6.184e-005 8.Z10e-006 8.210e-004 8.Z10e-005 0.0081
ki{4,9) Bay 4.930e-005 4.930e-005 0.0049 4.930e-004 0.0488
ki4,11) Bay 3.9384 0.0578 5£.7800 0.5780 £7.2220
ki6,4) Bay 0.1670 0.1670 16.7000 1.6700 165.3300
ki6,7) Bay 7.138e-004 4.300e-004 0.0430 0.0043 0.4257
k(7,6) Bay 0.0197 0.0116 1.1600 0.1160 11.4840 Y
Name: (1.4 Value: [5.7190283 Mean: [7.50000000 <aEditd
- " Fi -
Tupe: € Fived Low Limit: [0.75000000 SD: |742.50000000
C Adustable o mSave
i High Limit; I?S,UUOUUDUU
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| Done I Cancel | Help |

Figure 3: An example of a parameter window in SAAM II
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Another important facet of SAAM II is data window. Data window utilizes tables

in a specific format, which enables combinations of values for bioassay measurement

data such as Excretion and Skeleton. An example of data window is shown in the Figure

4 below (SAAM 11 help).

-0 x|
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9z2.3130
9z.5410
9z.5620

sEEpBERBERBEREEEDEDRERED

Data Format is okay

Figure 4: An example of a data window in SAAM 11

With the Plot command, SAAM II provides extended plotting abilities. This helps

the user to create a plot for numerous variables; also the user can alter the plot scale

settings and limit them. An example of plot is illustrated in Figure 6 below (SAAM II

help).

26



eno '\ SAAM Il Compartmental - [Plot]
e File Edit View Show Compute Set Window Help =181 X|
D[=|d| & 7|5 BEES =l 8% x|
80 T T T T T T Mn_-___*_,
o m— - me o e i s1
f__—n——_MM‘—m o Excretion
d__a—c‘d’/n ---s2
e o Bone
60 _//’— —
L //
a0f e -
201 B oo
Q L L L L | L 1 L L 1 L 1 L L
0 1000 2000 3000
1 (doys)
(Solved) 0 min 0.0 sec [— l— Y

Figure 5: The screen shot of plot in SAAM 11

3.2 Total objective function

The total objective function is reduced during the process and the two information
criteria. Akaike information criterion, and the Schwarz-Bayesian information criterion
can be used in the evaluation process of the model order. In order to attain the best fit,

SAAM II should reduce the objective function as indicated in the equation below.

1 | oA ’ ' (i, = s(pt, )’ @ (P -m,,)’
Rp)=— 3> 1og[vi,j(s<p,ri,,>,vi,j,vj> ptl e N Pt og(0),)
=l i=l V,-,j(S(P,li,j),yi,j,vi,j) k=1 Op’k
Where: Equation 4

p = the vector of adjustable parameters
R(p) = the objective function, yi,j is the ith datum in the jth data set

S(p.ti,j) = the model value (a sample in the compartment module)
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vj = the variance parameter in the jth data set

Vi,j(s(p ,t1,)), yi,jvi) = the variance model for yi,j

J = the number of data sets Nj = the number of the data points in the data set

M = the total number of the data points

mp,k = the mean value of pk over a group of similar subjects (population mean)

op,k = the standard deviation of pk in that population

The Akaike information criterion as compared to other related methods offers
efficient methods of the relative goodness of fit of a statistical model. This criterion was
suggested by Hirotsugu Akaike during the early 1970’s. The criterion is normally defined

using Equation 5.

AIC=-2log (L) +2K Equation 5

Where. L = the log of the maximized likelihood

K = the number of estimable parameters (Burnham and Anderson, 2002).

Akaike information criterion values are a relative scale and are strongly
dependent on sample size. This approach evaluates the relative distance of the likelihood
function described by a fitted candidate model from the unknown true likelihood function
that generated the data. AIC is generally positive, nevertheless, when an additive constant
shifts values, a negative value is obtained. AIC difference values are easy to illustrate and
permit a quick evaluation and rating of candidate models. The AIC difference is defined

using Equation 6.

Ai= AIC-AIC i, Equation 6

28



Where:

Al = the AIC differences

AIC = the AIC value of the ith model

AlICpin = the smallest AIC value among all candidate models (Burnham, 2002).

It is deemed that those models with A; < 2 have significant support, models with
values of 4 < A; < 7 have considerably less support and models with A>10 do not have

the necessary support (Burnham and Anderson 2002).
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The ICRP 67 systemic model for Strontium was generated with the aid of SAAM
IT as shown in Figure 6 below. The transfer rates listed in ICRP 67 have been assigned in

each route between compartments.
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Figure 6: Compartment model of ICRP 67 systemic model for strontium in SAAM II

30



3.3 IMBA Software
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Figure 7: The Main Screen of IMBA

IMBA, which is an acronym for Integrated Modules for Bioassay Analysis, is an
assortment of software units. The software aids in the performance of the existing I[CRP
biokinetic and dosimetric models that approximate the ingestion and dosage of
radioactive substances. Currently, the Approved Dosimetry Services that are based in the
United Kingdom employ components of the IMBA software for the regular dose
evaluation in work environments following rigorous quality checks of the software.
Although the IMBA modules are approved for use, the Health Protection Agency,

Radiation Protection Division (HPA-RPD)* keeps on making adjustments to the

* Health Protection Agency, Radiation Protection Division, Oxford, UK.
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components of the IMBA software. Some of the best features of IMBA modules are their
personalized, easy-to-use interfaces especially in the IMBA Expert' ™ editions, which
have been developed under the sponsorship of US and various organizations based in the
UK. Such interfaces make it possible to use the conventional ICRP models. They also
make it possible for users to alter a large number of the parameter values. These
alterations permit the use of highly developed methods of handling data in the
computation of internal dosage. Such computations involve using the maximum
likelihood technique in the tallying of data and handling a variety of data forms, for
example, feces, urine and the entire body data all at once. The computations may also

deal with large numbers of acute and chronic intakes (Birchall et al, 2005).

Bioassay quantities and doses from a known intake can be estimated using the
base unit. The base unit can also work from back to the front to approximate the best
intake from a group comprising a maximum of two hundred bioassay measurements.
From the models, it is possible to estimate long-term and short-term inhalation of vapors
as well as the intake of radionuclides through food and injections. On the IMBA
interface, there are keys that enable users to pick any of the ICRP default factors. One can
also specify each value to be used if all the values in the model are not needed. The
software consists of a variety of tools that facilitate the input and output of data and
graphical features. The software, which employs about seventy-five of the most
frequently encountered radioactive nuclides, also has report writing and online help

facilities (Birchall et al, 2005).

The IMBA Professional Plus was used in this investigation the ICRP 67 default

parameters was employed to provide fit of data and predict an intake for each case. Data
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obtained from urine and feces were also input into the software for simultaneous
computation to estimate the best approximation of intake. The model was tested by using
transfer rates that had previously been calculated using geometric mean parameter values

of eleven instances from the SAAM II software.

3.4 IMBA Statistics
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Figure 8: Calculated Intake amount with Maximum Likelihood Method “best fit”

3.4.1 Maximum Likelihood Method

The maximum likelihood method defines the ‘best fit’ quantity of the intake (I) as
the intake that has the highest probability of fitting the measurement data. The IMBA fit

employs the maximum likelihood technique of fitting using numerous chronic and acute
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intakes. It also handles diverse data types such as urine, feces and whole body count data
all at once. Small quantities below normal detection limits can be used in the analyses.
Any number of independent intake regimens can be enumerated (Birchall et al, 2003). In
these investigations, the mean value of intake is not identified, although a known part of
data set. Therefore, the mean is approximated from the data and denoted as u ’ for a test
distribution. The range of error in the distribution is approximated to be equal to the
probable error of the main population. Therefore, the probability function is given by

Equation 7.

1
g

P (1) = (—=)" EXP [—§ 3 (%)2] Equation 7
Where:
o = the standard deviation of the parent function.

u' = the estimated mean for the data.

x1= the value at each measurement (Bevington, 2003).

IMBA professional plus makes use of two major statistics to establish an
association between predicted and calculated data. These two statistics are the chi-square
statistics, which is denoted by y* and the autocorrelation coefficient that is represented by

the symbol p.

34



3.4.2 Chi-Square Statistics

The chi-square test statistic measured the degree of fit between the measured
values and the predicted values (Puncher 2007). The incorporation of the chi-square test
into the IMBA software enables it to approximate the bioassay intake function.
Consequently, the probability of a chi-square test statistics of a given size can be
computed (with degrees of freedom equal to the measured values less one), assuming the
model fits the data. This probability, called a p-value indicates the relative plausibility or
implausibility of the fitted model. The following equation illustrates how the chi

parameter is computed.

N
X = E(xi —-u'’ Equation 8
=

1
M !
In the above equation, u’ signifies the average of the experimental data while x; denotes

the actual value in the group of data (Knoll 2000).

Small values of chi-square are obtained when the P-value is greater than 0.20,
indicating the fitted model is quite plausible. Such small values show that there is a close
match between the calculated and predicted variations in the data. In contrast, high chi-
square values are obtained when the P-value is smaller than 0.005, indicating the fitted
model is quite implausible. Such high values indicate of inadequate fits between the

measured and expected variations in the data.
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3.4.3 Autocorrelation Coefficient

The autocorrelation coefficient is useful in uncovering lake of independence
between observed values close in time. For a string of residuals, the autocorrelation

coefficient is computed using the equation 9.

2
r

o= Equation 9

>R

i=1

—

In this equation, Ri denotes the residual in the ith position in a succession of N
residuals. The value of N must always be greater than 4 (Puncher 2007). Provided that
the tallying process presumes the evaluated uncertainties are in a lognormal fashion with
an equal geometric standard deviation presupposed for each quantity, then each residual

is computed as (Puncher 2007).

_ In(M;)-In[1* B())]
Ino,

R

A

Equation 10

Where:
Ln (Mi) = the ith measurement, at time ti after the intake.

I = the estimate intake.

B(ti) = A fraction the relevant bioassay quantity, at time ti after the intake.
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o, = the geometric standard deviation assumed to represent the uncertainty of

data.

A point worth noting is that it is impossible to employ the p test in instances

where a given data array contains less than four values (Puncher 2007). Table 4

summarizes how the two test statistics generated by IMBA can be used together in order

to make overall judgments concerning the “goodness of fit” of the fitted models

(Derryberry, 2013).

Autocorrelation Test

Chi-Square Test

Large p-value

(good model fit to the data)

Small p-value

(poor model fit to the data)

Large p-value

(no systematic bias in the

Data is consistent with null
hypothesis. Interpretation
of p-value obtained from

Data is consistent with
alternative hypothesis.
Interpretation of p-value

data) the chi-square test is not obtained from the chi-
problematic. square test is not
problematic.

Small p-value

(systematic bias in the data)

Data is consistent with null
hypothesis. P-value
obtained from the chi-
square test would be larger
if there were no data
clumping.

The results are ambiguous.
P-value obtained from the
chi-square test would be
larger if there were no data
clumping, so there is
uncertainty that the p-value
is small.

Table 4: An explanation of how the Chi-square test and autocorrelation coefficient are
utilized together to assess model “goodness of fit”
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 Non-human Primates Data and SAAM II Predictions Results

The retention of strontium (Sr) in bioassay data type (urine and feces) was
predicted with the aid of the SAAM II software. The ICRP 67 strontium systemic model
was employed in the process. Strontium-90 was administered intravenously to 21 Non-
human primates. The time between the administration of Sr-90 and death of the animals
was between 1 and 7,168 days. The details of the 21 non-human primates were already

summarized in Table 1.

Comparisons, were made between the data obtained from the non-human primates
and the predicted values of intake, and other end point data based on the ICRP 67
systemic model. SAAM II employed the default parameters as provided in ICRP 67 to
estimate the retention values in urine, feces, and skeleton in the comparison of measured
and expected values. In this study, the urine and fecal bioassay data were analyzed

simultaneously except in, 11 cases were they were analyzed separately.

The information illustrated the variations in the concentration of Sr activity in
bioassay data with changes in time. Figures 9 to 30 illustrate the retention of Sr for
predicted data and the measured data with respect to time, all instances that were assessed

are provide in the figures.
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Figure 18: Case R34F, urine and feces are separate
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Figure 26: Case R52F, urine and feces are separate
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Case R7M (Figure 9) illustrated Sr-90 retention in excretion as a function of time.
It was shown that the percentage Sr-90 retained increased as time progressed. The rate of
increase was very high within the first 50 days. From there, the rate increased gradually.
It was noted that the predicted values and calculated values were almost similar. Figures
10 to 30 also exhibited trends similar to what was observed in Figure 9. However, there
were slight variations in the initial Sr-90 retention values. The lowest initial values were
observed in Cases ROM, R33F, R34F, R29F, and R50F, whereas the highest initial
retention rates of 80% were observed in Cases R8F and R61M. In the rest of the figures,

the initial rates ranged from 10% to 40%.

The SAAM II software and the ICRP 67 default transfer rates were used to
evaluate the strontium activity held in the skeleton against the measured values. The
quantified amounts of Sr-90 were compared with the estimated values when death
occurred. The proportion of the predicted values established was mapped out as a
function of time. The number of days after injection of Sr-90 varied from one day to
7,168 days. In a large number of instances, it was observed that the skeleton retained all
the Sr-90 thereby giving a retention ratio of 1. In addition, during the late stages of the
primates’ lives (just before death), it was realized that the ratio of predicted to measured
values in the skeleton was also 1. Those observations could be attributed to the fact that
Sr-90 exhibited behavior that was similar to calcium. It was known that any calcium
taken into the body went to the bones to assist in the development of healthy bones as
well as teeth. In addition, calcium requirements increased with an increase in age. That

implied that more calcium was directed to the bones and stored as the primate aged. That
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explained why the measured values of Sr-90 retention in the skeletons of the primates

were high at around the time of death.

The retention values of the skeleton were similar to the predicted values because
only slight differences in the two categories were observed. This information was
summarized in Table 5. Figure 31 was used to further illustrate the information in Table

5.
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Skeleton

Days Post SAAM Measured Fraction
Case # Injection Predicted (% ID) P/M %Differences
R7M 181 233 233 1 0
RS8F 3506 3.13 2.81 1.1 10.77
ROM 2520 20.9 20.9 1 0
R10F 94 42.7 42.7 1 0
R33F 2278 6.54 59 1.1
R34F 1921 16.1 16.3 0.98 10.33
R35F 2040 16.1 16.3 0.99 1.23
R27F 3159 14.55 14.50 1 0
R28F 2087 14.79 14.8 1 0
R29F 280 36.99 37 1 0
R32F 7168 522 5.20 1 0
R36F 4 55.8 55.8 1 0
R37F 1 41.2 41.3 0.99 0.24
RS50F 1212 22.9 22.9 1 0
RS51F 441 27.3 27.2 0.99 0.36
R52F 21 51.7 51.7 1 0
R61F 5372 2.47 2.48 0.99 0.40
R62M 5853 1.09 1.1 0.99 2.71
R1881M 2 27.6 27.6 1 0
RI191M 16 43.16 48.7 0.88 12.06

Table 5: Summary of the retention fraction of SAAM II prediction and measured values
in skeleton.
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4.2 Modification of Default Parameters based on Intravenously Injected Non-human
Primates Data

SAAM II software was used to improve the efficiency of the original transfer
rates explained in the ICRP 67 systemic model for strontium. The improvement of the
parameters was carried out in the range of a tenth and tenfold the initial parameters. The
original parameters were used to improve data from the 21 non-human primates that
received intravenous injections of Sr-90. Particularly, excretion and skeleton data were
employed in the optimization process with the aid of the Bayesian technique. In total, 22
parameters explained in the model were optimized. Therefore, the adjusted parameters
were produced by the SAAM II software. The values of the total objective function and

AIC were also obtained from the software.

Fit parameters for the bioassay data together with the modified transfer rates were
provided by the SAAM II software. The computed statistical figures were minimized
thereby giving predicted and measured values, which differed by a maximum of +20%.
The data showing the parameters for systemic model for Strontium were summarized in
Table 6 to 10. The bioassay data (urine and feces) was analyzed simultaneously (and

separately for eleven cases).

The modified parameters were used in the computation of the geometric means as
well as the geometric standard deviations (GSD). The results of the geometric means and
geometric standard deviations of the systemic model are provided in Table 11 and 12. In
addition, the estimate excretion in the different samples (feces, urine) and retention in

skeleton, and soft tissue were evaluated against the default model predictions using the
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geometric mean parameters. Figures 32, 33, 34 and 35 provide the summaries of those
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Model Parameters default Geo. Mean GSD

Plasma to STO 7.5 11.01 6.0813
Plasma to ST1 1.53 2.109 2.233
Plasma to ST2 0.003 7.53E-03 4.902
STO TO Plasma 2.5 4.583 3.492
ST1 TO Plasma 0.116 0.105 3.111
ST2 TO Plasma 3.80x10™ 1.79x10™ 4.375
Cor. Surface to Plasma 0.578 0.275 5.296
Non-exchang Cor. Vol. to Plasma 8.21x10™ 6.365 4,531
Non-exchang.Trab. Vol.to Plasma 4.93x10™ 9.89x10™ 3.381
Trabecular Surface to plasma 5.78x10™ 0.618 4,666
Plasma to Cortical Surfaces 1.67 2.392 4.236
Ex. Cor. bone vol. to Cor.Surf. 4.30x107 4.08x10-3 5.00
Cor. Surf. to Cor. Ex. Vol. 0.116 0.174 4.248
Ex. Cor. bone vol. to Non-Ex. cor. Vol. 4.30x10° 3.55x10° 4.873
Ex. Trab. bone vol. to Non-Ex Trab. Vol. 4.30E-03 5.19E-03 3.396
Trab. Surf. to Trab. Ex. Vol. 0.166 0.322 2.781
Plasma to Trabecular Surfaces 2.8 3.646 3.517
Ex. Trab. bone Vol. to Trab. Surf. 4.30x10° 2.60x10° 4.627
Plasma to Urinary bladder contents 1.73 1.774 4.144
Urinary bladder to Urine 5.00 4,085 4.567
Plasma to G.I tract contents 5.25x10™ 0.747 4.484
G.l tract contents to Feces 1.00 1.422 3.809

Table 11: Summary of Geometric mean and GSD values along with the default values for
systemic model for 21 non-human primates using combined urine and feces data
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Model Parameters default Geo. Mean GSD

Plasma to STO 7.5 18.78 6.048
Plasma to ST1 1.53 2.677 2.203
Plasma to ST2 0.003 0.0067 4.368
STO TO Plasma 25 3.5827 5.870
ST1TO Plasma 0.116 0.0465 5.025
ST2 TO Plasma 3.80x10™ 8.8x10° 2.830
Cor. Surface to Plasma 0.578 0.240 2.917
Non-exchang Cor. Vol. to Plasma 8.21x10™ 4.8x10° 5.292
Non-exchang.Trab. Vol.to Plasma 4.93x10™ 1.6x10™ 3.128
Trabecular Surface to plasma 5.78x10™ 0.4694 3.990
Plasma to Cortical Surfaces 1.67 2.5608 3.316
Ex. Cor. bone vol. to Cor.Surf. 4.30x10° 2.04x10° 3.588
Cor. Surf. to Cor. Ex. Vol. 0.116 0.2462 3.537
Ex. Cor. bone vol. to Non-Ex. cor. Vol. 4.30x107 7.6x10° 2.225
Ex. Trab. bone vol. to Non-Ex Trab. Vol.  4.30x10° 4.99x10° 2.816
Trab. Surf. to Trab. Ex. Vol. 0.166 0.1928 5.563
Plasma to Trabecular Surfaces 2.8 0.9220 15.02
Ex. Trab. bone Vol. to Trab. Surf. 4.30x107 0.01794 172.0
Plasma to Urinary bladder contents 1.73 2.58473 3.698
Urinary bladder to Urine 5.00 11.3111 4,771
Plasma to G.I tract contents 5.25E-01 0.6603 2.952
G.l tract contents to Feces 1.00 0.58374 2.395

Table 12: Summary of Geometric mean and GSD values along with the default values for
systemic model for 11 non-human primates using separate urine and feces data
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Figure 32: Strontium-90 retentions in feces predicted by the systemic model using default
and geometric mean parameters respectively
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Figure 33: Strontium-90 retentions in urine predicted by the systemic model using default
and geometric mean parameters respectively
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Figure 34: Strontium-90 retentions in soft tissue predicted by the systemic model using
default and geometric mean parameters respectively
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Figure 35: Strontium-90 retentions in skeleton predicted by the systemic model using
default and geometric mean parameters respectively.

68



Figure 32 showed the percentage of Sr-90 retained in feces as predicted by the
systemic model using parameters of the geometric mean and the default parameters. It
was realized that the default values were slightly higher than the predicted values
especially between days 4 and 10. Figure 33 showed that the predicted retention in urine
was significantly lower than the default values by about 10%. Figure 34, on the other
hand, illustrated strontium retention in soft tissues. The default retention values and the
predicted retention values were similar within the first 100 days. However, there were
slight variations between the default values and the predicted retention values from day
100. The predicted retention values were higher than the default values by about 0.2%.
The overall trend that was observed was the retention values increased from the time of
injection and reached a peak of 1.6 % at around day 50. The peak dropped drastically to
about 0.5% and decreased gradually. There is no clear evidence illustrate the difference

that occurs between default and geometric mean parameters after 100 days.

Figure 35 illustrated Sr-90 retention in the skeleton. It was realized that the
predicted retention values were significantly higher than the default retention values by
about 25%. In addition, both retention values were high immediately after injection.
However, the rate of retention decreased gradually after day 100. There are many factors
may dominate predictions at various stages, these factors are age, fasting, low dietary

levels of calcium, magnesium, phosphorus, milk diets and vitamin D (ICRP 1993).

Table 10 and 11 indicated a summary of the geometric means and GSD values
along with the default values of the systemic model. In total, twenty-two different
parameters were used in the computation of the geometric means and GSD values. Seven

out of the twenty-two parameters showed the movement of Sr-90 from various surfaces
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to plasma. The remaining parameters showed the movement of Sr-90 from plasma to
other surfaces as well as into the bladder and the gastrointestinal tract. It is important to
note that there is no real different between default and geometric mean values when

consider the GSD values (range from 6.08 to 2.2).

The values of total objective function and AIC are indicated in Table 13 and 14.
The values were automatically calculated by SAAM II software. It can be seen that the

optimized model is fitting the measured data much better than the default model.
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Case # AIC default model  AIC optimized model AAIC
R7M 3.53042 2.728445 0.801
R8F 3.54758 0.7529 2.794
ROM 4.22343 1.3889 2.834
R10F 4.94420 3.3892 1.555
R33F 3.20152 0.4602 2.741
R34F 4.25279 1.3497 2.903
R35F 4.37072 0.9267 3.444
R27M 4.52358 1.2713 3.252
R28F 5.93133 1.95305 3.978
R29F 5.37549 1.4347 3.940
R32F 4.34712 1.1633 3.183
R36F 5.04723 3.0166 2.030
R37F 5.88062 3.94162 1.939
R50F 5.25007 1.6741 3.575
R51F 4.45882 1.3283 3.130
R52F 4.48748 3.2779 1.209
R61M 2.51854 0.8059 1.712
R62M 3.25084 0.5799 2.670
R188F 4.97428 1.41200 3.562
R199M 4.65843 0.97426 3.684

Table 13: Differences in AIC values between default and optimized model.
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total objective Function total objective Function

Case # default model optimized model
R7M 5.202 2.12
R8F 5.202 -0.60
ROM 6.520 0.415
R10F 7.676 3.7
R33F 4.518 -0.9
R34F 6.614 0.6
R35F 6.852 -0.32
R27M 7.177 0.45
R28F 9.982 1.2
R29F 8.798 0.38
R32F 6.837 0.34
R36F 6.256 2.20
R37F 6.923 4.01
R50F 8.606 1.1
R51F 6.984 0.19
R52F 6.470 3.2
R61M 3.168 -0.44
R62M 4.639 -0.84
R188F 6.111 0.36
R199M 6.812 -1.2

Table 14: The values of total objective function



4.3 Non-human Primates Data and IMBA Professional Plus Predictions

The activity of strontium (Sr) in bioassay data type (urine and feces) was also
evaluated with the aid of the IMBA Professional Plus. Eleven of Rhesus Macaques were
analyzed using the method of maximum likelihood in IMBA. The ICRP strontium

systemic model was employed in the process.

Comparisons, were made between the data obtained from the non-human primates
and the predicted values based on the ICRP 67 systemic model. The IMBA Professional
Plus software employed the default parameters from ICRP 67 to provide fits to data and
predict an intake for each case; furthermore, comparison between measured and expected
values were obtained. As mentioned before, the urine and fecal bioassay data were
analyzed both simultaneously and separately. In addition, the model was examined by
applying transfer rates computed by geometric mean parameter values of 11 cases
analyzed by the SAAM II software. The results of this analysis are plotted in Figures 36

to 55.
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Injected IMBA

Activity predicted Activity (uCi)  Predicted Activity/ % Different

(uCi) Using default parameter  Injected Activity
Case # Transfer
R7M 37.50 30.97 0.825 17.5
R8F 39.70 36.75 0.925 -7.5
ROM 37.80 34.35 0.908 -9.2
R29F 41.60 23.51 0.565 -43.5
R33F 56.20 40.54 0.721 -27.9
R35F 56.10 25.47 0.45 -55
R50F 26.10 60 2.29 129
R51F 26.10 44.59 1.70 70
R52F 130.50 68.37 0.523 -47.7
R61M 117.60 90.27 0.767 -23.3
R191M 5 3.60 0.72 -28

Table 15: Measured and predicted intake values of Strontium activity using combined
urine and feces data and the maximum likelihood method in IMBA Professional Plus

From Table 15, it was seen that the highest injected activity was 130.5 uCi,
whereas the lowest injected activity was 5 4 Ci. The IMBA predicted quantities using the
ICRP default values were lower than the injected activity in most the non-human primate
subjects. In addition, the ratio of the predicted activity and the injected activity was less
than 1 in eight out of the eleven cases. In two instances, the ratio was more than one
(R50F and R51F), whereas the ratio was less than 0.5 in one subject (R53F). It was also
observed that the predicted activity values decreased in proportion to the injected activity

and vice versa. The highest predicted activity was obtained at the injection activity of
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26.10 in subjects RS1F and R50F where the predicted activities were approximately two
times higher than the injected activities. The overall trend was that IMBA underestimated

the amount of injected activity in all cases except in R50F and R51F.

Injected IMBA
Activity predicted Activity (uCi)  Predicted Activity/

(uCi) Using optimized parameter  Injected Activity

Case # Transfer % Different
R7M 37.50 40.21 1.07 7
R8F 39.70 40.10 1.01 1
ROM 37.80 37.97 1.0 0
R29F 41.60 29.08 0.7 -30
R33F 56.20 37.78 0.67 -33
R35F 56.10 41.54 0.74 -26
R50F 26.10 62.16 2.4 140
R51F 26.10 79.64 3.05 205
R52F 130.50 95 0.73 -27
R61M 117.60 75.67 0.64 -36
R191M 5 5.27 1.05 5

Table 16: Measured and predicted intake values of Strontium activity using combined
urine and feces data and the maximum likelihood method in IMBA Professional Plus
using optimized Parameter Transfer by SAAM II

The IMBA predicted activity using SAAM parameter transfer values were higher

than the injected activity thereby giving high ratios of predicted activity and injected
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activities. It was seen that the ratio of the predicted activity and the injected activity was
slightly more than 1 in 6 out of the total 12 nonhuman primates. The ratio of the predicted
versus injected was twofold in subject R50F and threefold in subject R51F. In the
remaining five cases, the ratio of the predicted activity and the injected activity was less
than 1 but more than 0.6. Those values showed that IMBA Professional Plus using
SAAM parameter transfer overestimated the activity of strontium in non-human cases, in
two samples. However, the SAAM parameter prediction was relatively accurate in its
predictions in four of the samples (R7M, R8F, R9M, and R191M) since the ratio of the
predicted value and the injected value gave 1 and values that exceeded 1 by negligible

margins.

A comparison between Table 15 and Table 16 revealed that the IMBA predicted
activity using optimized parameter transfer (in Table 16) had higher values than the
predicted activity using the default in Table 15. The higher values led to the
comparatively higher ratios of predicted activity and injected activity. That observation
implied that IMBA prediction using optimized parameter transfer overestimated
strontium activity more than the default parameter. In addition, it was realized that Table
15 did not have any instance where the predicted strontium activity was equal to the

injected activity. (Further details in section 4.3 based on statistics tests)
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Injected Urine Fraction Feces Fraction

Activity predicted Predicted / Predicted  Predicted /
(uCi) Injected Injected Injected Injected
Activity Activity

Case # (uCi) (uCi)

R7M 37.50 25.68 0.68 21.08 0.56
R8F 39.70 31 0.78 29.70 0.75
ROM 37.80 25.22 0.67 12.70 0.34
R29F 41.60 7.87 0.19 17.75 0.43
R33F 56.20 40.97 0.73 10.84 0.20
R35F 56.10 30.72 0.55 15.45 0.28
R50F 26.10 63.78 2.44 57.94 2.22
R51F 26.10 54.62 2.10 37.51 1.44
R52F 130.50 68.29 0.52 47.86 0.37
R61M 117.60 97.70 0.83 85.59 0.73
R191M 5 3.59 0.72 3.0 0.60

Table 17: Measured and predicted intake values of Strontium activity using urine, feces
data separately and the maximum likelihood method in IMBA Professional Plus

Table 17 indicated that, in all the samples, higher strontium activity was predicted
by IMBA in urine data than in feces data. There was no instance where the separate
prediction of strontium activity in urine or feces gave precise estimates. For the urine
data, IMBA underestimated the strontium intake in all the samples except in R50F and
R51F. In sample R29F and R52F, the predicted activities were five times and two times

more than the injected values. For the feces data, similarly, all the strontium intake values
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were underestimated by IMBA except for samples RSOF and R51F. There was no case
where the IMBA predicted value was similar to the injected strontium activity. Therefore,
it could be deduced that IMBA did not give correct estimates of strontium activity in

separate urine and feces data. (Further details in section 4.3 based on statistics tests).

Injected Urine Fraction Feces Fraction
Activity predicted Predicted / Predicted  Predicted /
(uCi) Injected Injected Injected Injected
Activity Activity

Case # (uCi) (uCi)
R7M 37.50 40.24 1.07 31.62 0.84
R8&F 39.70 52.35 1.31 41.62 1.04
ROM 37.80 38.45 1.01 18.27 0.48
R29F 41.60 14.36 0.34 27.02 0.65
R33F 56.20 66.75 1.18 20.75 0.37
R35F 56.10 30.72 0.55 15.45 0.27
R50F 26.10 81.08 3.10 86.21 3.30
R51F 26.10 67.56 2.58 55.13 2.11
R52F 130.50 108.10 0.83 80.18 0.61
R61M 117.60 96.05 0.82 83.75 0.71
R191M 5 5.64 1.13 5.13 1.03

Table 18: Measured and predicted intake values of Strontium activity using urine, feces
data separately and the maximum likelihood method in IMBA Professional Plus using
optimized Parameter Transfer
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Optimized parameter transfer overestimated the injected activity of strontium in
all urine data except in cases R29F, R35F, R52F, and R61M. In R29F, the predicted
value was five times less than the actual injected value. However, for the feces data,
optimized parameter transfer underestimated the strontium activity in all cases except in
R8F, R50F, R51F, and R191M. There were significant underestimates in cases R33F and
R35F where the predicted activities were five times less than the injected activities.
Similar trends were observed in the predicted activities of feces and urine data. For
example, when the predicted activity of urine increased in a given case, the feces activity

also increased in the same case.

A comparison of Table 17 and Table 18 revealed a similar trend in both tables
that the predicted strontium activity was higher in urine than in feces. However, some
cases showed opposite trends in the predicted and injected activities using SAAM 11
optimized parameter transfer and the default parameters. In Table 17, for example, it was
seen that the predicted values of urine and feces data for case R191M were lower than the
injected values. In Table 18, the same sample had higher predicted activities of urine and
feces data than in Table 17. That observation meant that using two different methods of
prediction could give totally opposite results for the same sample. (Further details in

section 4.3 based on statistics tests).
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4.3.1 Chi-square and Autocorrelation Test Results

The Chi-square and Autocorrelation test illustrated the “goodness of fit” between
predicted and measured data for default and optimized parameters. This information is
summarized in Table 19 for combined urine and feces, and Table 20, 21 for separate

urine and feces data.

Default Model Optimized Model

Chi-squre Autocorrelation Chi-squre Autocorrelation

Case # (P-value) (P- value)
R7M 3.68 1.12x 102 5.24 5.4x 102
R8F 4.75 1.9x 102 2.25 1.2x 101
ROM 1.34 9.6x 101 1.99 9.2x101
R29F 9.3 6.6 X102 7.12 3.0x 101
R33F 1.77 1.6 x 102 3.88x 101 0.00
R35F 1.43x101 2.08x102 1.31x 101 5.6 x 103
R50F 411 0.00 3.23 0.00
R51F 1.55 0.00 3.84 0.00
R52F 2.25 9.58 x 101 2.69x 107 8.5x 102
R61M 1.38x 101  0.00 2.2x101 0.00
R191M 9.5x 101 9.35x 101 1.49x 101 29x101

Table 19: Chi-square and Autocorrelation test results for optimized parameters using
combined urine and feces data
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From Table 19, it was seen that the chi-square tests were within the acceptable
range (P>0.05), and the autocorrelation tests were also within the acceptable range
(P>0.05) except the shaded values. Therefore the optimized and default models both fit
the data well. However, the optimized model fit the measured data better than the default

model in 3 cases.

Default for Urine Optimized for Urine

Chi-squre Autocorrelation Chi-squre Autocorrelation
Case # P- value P-value P-value P- value
R7M 8.22x101 2.00x101 6.36 x 101 6.70 x 102
R8F 6.92x101 2.36x102 9.45x 101 1.08 x 101
ROM 7.25x101 8.97x101 5.82x101 8.12x 101
R29F 1.00 4.55x 101 1.00 3.65x101
R33F 1.00 242 x101 9.99x 101 3.97 x 10?2
R35F 1.00 2.28x101 1.00 5.07 x 102
R50F 1.00 0.00 1.00 0.00
R51F 1.00 0.00 1.00 0.00
R52F 9.46x101 8.80x101 1.00 2.64x101
R61M 1.00 4.80x 104 1.00 0.00
R191M 9.96x101 853x101 1.00 9.08 x 10-2

Table 20: Chi-square and Autocorrelation test results for Urine data
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Table 20 illustrated that the chi-square tests were within the acceptable range

(P>0.05), and the autocorrelation tests were also within the acceptable range (P>0.05)

except the shaded values. Therefore the optimized and default models both fit the data

well. However, the optimized model fit the measured data better than the default model in

4 cases.
Default for Feces Optimized for Feces

Chi-squre Autocorrelation Chi-squre Autocorrelation
Case # P- value P-value P-value P- value
R7M 1.00 3.27x101 1.00 4.03x 101
R8F 1.00 557 x101 1.00 6.12x 101
ROM 1.00 5.30x101 1.00 4.46x 101
R29F 8.69x101 1.07x101 9.58x 101 3.11x101
R33F 1.00 3.52x103 8.89x 101 3.57x107?
R35F 1.00 494x 101 1.00 5.28x 101
R50F 1.00 0.00 1.00 0.00
R51F 1.00 0.00 1.00 0.00
R52F 1.00 2.59x101 1.00 2.03x101
R61M 1.00 6.66 x 104 1.00 246 x 104
R191M 1.00 3.97x101 1.00 2.98x101

Table 21: Chi-square and Autocorrelation test results for feces data.
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Table 21 indicated that, the chi-square test (p-value) are large for both models of
urine and feces data, while the autocorrelation test (p-value) are large for most cases
except the shaded values. However, the optimized model feces did not improve the fit to
the measured data, and the chi-square (p-values) and autocorrelation (p-value) are almost

matching for both models.
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Figures 36 to 45 show the data fitted for urine and feces samples using the default
parameter and optimized parameter transfer. It was seen that the data generated from
urine samples exhibited different fits from data obtained from feces samples from the
ICRP 67 default and SAAM optimized transfers coefficients. The overall trend that was
seen in the urine samples (in both parameters) was that the predictions of excretion
decrease as time progressed. The initial excretion was very high on the first day after
injection. However, that rate reduced exponentially with an increase in time. In the urine
samples, optimized and default models gave a good fit for all the cases since the chi-
square probabilities are large than 0.05. The predicted transfers and the urine data were in

agreement as there were no serious discrepancies between the two values.

However, it was noted that feces samples did not improve the fit for the default
model, thus the feces data were not in harmony with the predicted values as proposed by
the default and the optimized transfer parameters. In addition, different trends were
observed for the SAAM and default transfer parameters. For example, in the default
transfer, it was observed that the initial transfer was very high on the first day of injection
and decreased as time progressed just as was the case with urine samples. However, a
different overall trend was observed for the optimized values. The initial injection value
was low. That value increased slightly reaching a peak sometime after injection and
finally began decreasing exponentially as time progressed. A similar overall trend in all
feces data was seen from most figures. However, it was observed that the predicted
values and the feces data had some discrepancies. Those differences could be attributed

to the nature of the two samples (urine and feces). Feces, as a sample, contain more
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matrix compared to urine. The differences in the matrices were what were likely to have

influenced the actual strontium concentration values that were recorded.
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CHAPTER 5: SUMMARY AND CONCLUSIONS

Based on the results, the following hypothesis are supported:

First Alternative Hypothesis: The ICRP 67 optimized model will accurately

predict the retention in excretion and skeleton using SAAM 11 software.

Second Alternative Hypothesis: The ICRP 67 default model and optimized
model using IMBA software will predict the excretion and deposition of *°Sr from

intravenously injected in Rhesus monkeys.

Third Null Hypothesis: The predicted *°Sr intake of urine and feces data using
default model and optimized model in IMBA software are significantly different from

injected intake.

According to AIC test results for optimized parameters, the predicted retention
values yielded acceptable matches to the bioassay data in the combined and independent
urine and feces data. While the default parameter underestimated the measured retention
values. Strontium retention in excretion as a function of time revealed that the
percentage Sr-90 retained increased with time. The rate of increase was very high within
the first 50 days after which it declined progressively until the time of death of the non-

human primates.

The predictions of the skeletal retention of Sr-90 as given by the SAAM 11
software gave a near-perfect fit to the data. In many cases, the skeleton retained all the
strontium thereby giving a retention ratio of 1. Additionally, the ratio of predicted to

measured values in the skeleton was 1 during the final stages of the primates’ lives. These
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observations could be attributed to strontium metabolism, which resembled the
metabolism of calcium. The number of days post injection did not influence the predicted
skeleton retention values. The fraction of the predicted over the measured values ranged
from 0.88 to 1.1. The fraction was more than one for two cases, case R8F (3,506 days
post injection) and case R33F (2,278 days post injection). SAAM II underestimated the

skeletal retention in only one of the cases (R191M that had a ratio of 0.88).

The underestimation of the skeletal retention in the above case suggested that the
ICRP 67 systemic model could be improved by modifying the biokinetic parameters
within the established model structures. Therefore, SAAM II software was used to
improve the efficiency of the original transfer rates explained in the ICRP 67 systemic
model for strontium. The improvement was performed in the range of a tenth and tenfold
the initial parameters. Excretion and skeleton data were used in the optimization process
with the Bayesian technique. Twenty-two of the ICRP 67 default parameters explained in
the model were optimized. The changes in the default parameters suggested by each
individual set of animals data varied to summarized changes for all animals evaluated, the
geometric means, geometric standard deviation AIC, and total objective function of each
optimized value was calculated. The geometric means for each of the modified
parameters for the 11 cases were presumed to represent the optimized model parameters
for the population of monkeys. The retentions in feces, urine, skeleton, and soft tissue
were evaluated against the default model predictions using the geometric mean

parameters.

The activity of strontium in bioassay data type (urine and feces) for the 11 non-

human primates was evaluated using the method of maximum likelihood with IMBA.
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The ICRP 67 strontium systemic model was employed in the process. For default model,
the predicted activity in combined urine and feces data was underestimated by IMBA in
nine out of eleven instances. The predicted activity were lower than the injected activity
in most cases of non-human primate ranged from 0.523 to 2.29. The same data were
overestimated in two instances by twice the original injected values (RSOF and R51F).
The values of chi-square and correlations tests were computed. The chi-square p-value
was greater than 0.05 for all cases and the autocorrelation was greater than 0.05 for six

cases out of eleven instances.

The predicted intake values using combined urine and feces data and the
maximum likelihood method in IMBA software using optimized parameters also yielded
similar results. Almost half (6 out of 11) of the subjects had ratios of predicted activity
and the injected activity that were slightly more than 1. The other half (5 out of 11) had
ratios that were lower than one. Extreme cases of overestimation were observed in cases
R50F (twofold) and R51F (threefold). The optimized model parameters were found to
improve the predicted in three of eleven cases. The chi-square test calculated using both
models were found to be greater than 0.05, thus it is hard to compare between them based
on this test. However the chi-square and autocorrelation tests illustrated that the

optimized model fit the observed data better than the default model in only three cases.

In SAAM 11, it was impossible to compute the total intake from the
bioassay data and skeleton. However, the same feat was possible when using the IMBA

software
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The ICRP 67 default systemic model prediction for strontium underestimated the
measured retention values in excretion. The predicted activity in feces provided estimates
that were lower than the bioassay measurement values. Modified parameter transfer
provided adequate fits in the model for urine activity data compared to the default
transfer rate in four cases out of eleven based on chi-square and autocorrelation test.
However, it was noted that feces data could not be fitted properly by the modified model
based on chi-square test. The improper fit was probably because the mode of strontium
administration was intravenous, which did not allow more of the injected strontium to be

detected through the contents of the gastrointestinal tract.
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CHAPTER 6: FUTURE WORK

The biokinetic models optimized using the data on non-human primates indicate great
variation between the animals themselves. These differences in the parameters may be
attributed to the differences in physiology and behavior between the monkeys
themselves. Organizing the monkeys into sub-groups based on the characteristics that
dominantly affect the physiology may provide a better insight of the biokinetic models.

Some of these characteristics may be age of animals, sex, etc.

Animals used in this research, i.e., Rhesus monkeys (Macaca mulatta) are
phylogenetically very similar to humans, but there exists certain physiological and
anatomical differences, e.g., differences in physiology of digestion and the length of the
alimentary canal, between these animals and humans. The differences in the biokinetic
model parameters may be attributed to the differences in anatomy and physiology of
monkeys and humans. In the future, the physiological similarities and the differences
between the Rhesus monkeys and humans could be used to determine the applicability

limitations of the human biokinetic model to monkeys or vice-versa.

This research uses excretory and skeletal data from the monkeys injected intravenously
with *’Sr. Data available on whole body counts and blood retention combined with the
excretory and skeletal data can be used to better understand the biokinetics and develop a
new model. Furthermore, data from animals injected intramuscularly with *’Sr can also

be used to understand NCRP 156 wound model in the future.
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APPENDIX A

This section contains the rest of graphs that not presented in the thesis text. The
comparison of measured and expected values were obtained for combined urine and feces
data and Skeleton based on ICRP 67 systemic model for Strontium using SAAM II

software.
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APPENDIX B

Chi-square test and Autocorrelation test values

Case # Chi-squre p-value Autocorrelation P-value
R7M 5.24 9.9x101 296x 101 5.4x107?
R8F 2.25 9.97 x 101 2.07 x 101 1.2x101
ROM 1.99 9.61x 101 -5.22x 101 9.2x101
R29F 7.12 1.00 5.7 x107 3.0x101
R33F 3.88x101 3.0x101 7.76 x 102 0.00

R35F 1.31x101 1.00 3.8x101 5.6x103
R50F 3.23 1.00 8.83x 101 0.00
R51F 3.84 1.00 8.99x 101 0.00
R52F 2.69x102 1.00 2.43x101 8.5x102
R61M 2.2x101 1.00 7.26x101 0.00
R191M 1.49x 101  1.00 6.12 x 10-2 29x101
Table: Optimized Parameters

Case # Chi-squre p-value Autocorrelation P-value
R7M 3.68 9.99x 101 4.48x 101 1.12x 102
R8F 4.75 9.43 x 101 4.33x101 1.9x 107
ROM 1.34 9.87 x 101 -6.43x 101 9.6 x101
R29F 9.3 9.9x101 2.3x101 6.6 x 102
R33F 1.77 1.00 3.16x101 1.6 x107
R35F 1.43x101 1.00 3.00x 101 2.08x10?
R50F 4.11 1.00 9.30x 101 0.00

R51F 1.55 1.00 7.88x 101 0.00

R52F 2.25 1.00 -4.50x 101 9.58x 101
R61M 1.38x 101  1.00 540x101 0.00
R191M 9.5x 101 1.00 -4.01x 101 9.35x 101

Table: Default Parameters
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APPENDIX C

This section contains the rest of graphs that not presented in the thesis text. The IMBA
Professional Plus employed the default parameters as illustrated in the ICRP 67 and

optimized parameters to provide fit to data and predict an intake for each case.
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