
i

Use Authorization

 In presenting this thesis in partial fulfillment of the requirements for an advanced
degree at Idaho State University, I agree that the Library shall make it freely available for
inspection. I further state that permission to download and/or print my thesis for
scholarly purposes may be granted by the Dean of the Graduate School, Dean of my
academic division, or by the University Librarian. It is understood that any copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Signature _________________________________

Date _____________________________________

DEVELOPMENT OF VOICE CONTROL APPLICABLE TO

PROSTHETIC ARMS

By

DURGASAMANTH PIDIKITI

A thesis submitted in partial fulfillment of the

Requirements for the degree of

MASTER OF SCIENCE

IN

MEASUREMENT AND CONTROL ENGINEERING

IDAHO STATE UNIVERSITY

DECEMBER 2014

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of DURGASAMANTH
PIDIKITI find it satisfactory and recommend that it be accepted.

 Dr. Marco P. Schoen, Ph.D, Major Advisor

 Dr. Alba Perez, Ph.D, Member

 Dr. Alex Urfer, PT, Ph.D, GFR

iv

ACKNOWLEDGEMENTS

I would like to extend a special thanks to my major advisor, Dr. Marco P.Schoen

for his assistance and guidance in completing this thesis. Without his knowledge,

motivation, and support this research would not have been possible.

I would also like to thank my family members. Without their support and

unlimited patience this research would not have been possible.

v

TABLE OF CONTENTS

NOMENCLATURE .. VI

LIST OF FIGURES .. VII

ABSTRACT .. VIII

CHAPTER 1.0 - INTRODUCTION….…………………...…………………………….1

1.1 Problem Statement……………………………………………………………………2

1.1 Thesis Goals…………………………………………………………………………..3

CHAPTER 2.0……………………………………………...…………………………....4

2.1 Introduction To SimulinkTM…………………………………………………………..4

2.2 Introduction To ArduinoTM…………………………………………………………...7

2.3 Introduction To ArduinoTM compatibility in SimulinkTM…………………………...10

CHAPTER 3.0……………………………………………………………………...…...12

3.1 Introduction To Creating Blocks In SimulinkTM…………………………………….12

3.2 Serial Data Transmission Block……………………………………………………..21

3.3 EEPROM Block……………………………………………………………………..24

3.4 LCD display Block.………………………………………………………………….28

3.5 SERVO Motor Block………………………………………………………………..36

3.6 VOICE CONTROLLED BLOCK…………………………………………………..39

CHAPTER 4.0…………………………………………………………………………..49

4.1 Conclusion ………………………………………………………………………….49

4.2 Future Work ………………………………………………………………………...49

REFERENCES……………………..…………………………………………………..50

APPENDIX A…………………………………………………………………………...52

A1 - Steps involved in new Voice command creation .…………………………………52

A2 - Detailed Information on S-Function Builder contents……………………………..53

vi

NOMENCLATURE

EMG Electromyography

GUI Graphical User Interface

EEPROM Electrically Erasable Programmable Read Only Memory

LCD Liquid Crystal Display

HDL Hardware Description Language

DSP Digital Signal Processing

SD Secure Digital

vii

LIST OF FIGURES

Fig. 1. Opening SimulinkTM from MatlabTMwindow……………………………………………….. 4

Fig. 2. SimulinkTM window...…………………………………………………………………………5

Fig. 3. Libraries in SimulinkTM window………………………………………………………………6

Fig. 4. Blocks of Communication System Library in SimulinkTM window………………………….7

Fig. 5. GUI of ArduinoTM Software ………………………………………………………………….8

Fig. 6. List of examples in ArduinoTM Software …………………………………………………….9

Fig. 7. Analog read example in ArduinoTM Software………………………………………………...9

Fig. 8. Target Installer window ……………………………………………………………………..10

Fig. 9. List of support packages supported by MatlabTM………………………………………….....11

Fig. 10. New model selection window……………………………………………………………....12

Fig. 11. New untitled window for block creation…………………………………………………...13

Fig. 12. New window with S-Function Builder in it …………………………………………..........13

Fig. 13. mex –setup display message ……………………………………………………………….14

Fig. 14. List of all the compilers present in the system ……………………………………………..15

Fig. 15. S-Function Builder code and parameter filling window …………………………………..16

Fig. 16. SD card module ……………………………………………………………………….........28

Fig. 17. LCD Module top view with 40 pins on left side …………………………………………..34

Fig. 18. LCD shield module on right and Mega board on left ……………………………………..35

Fig. 19. LCD module connected to shield and shield connected to Mega board…………………...35

Fig. 20. Servo motor connection to UNO board ………………………………………………........39

Fig. 21. Input ports tab contents …………………………………………………………………….41

Fig. 22. Output ports tab contents …………………………………………………………………..41

Fig. 23. Parameters tab contents …………………………………………………………………….41

Fig. 24. EasyVR shield mounted on top of ArduinoTM UNO………………………………………47

Fig. 25. Side view of UNO board on bottom and EasyVR board on top ………………………......48

Fig. 26. EasyVR commander GUI …………………………………………………………………..52

viii

ABSTRACT

This thesis presents a new approach of controlling a prosthetic arm using voice

commands. This voice controlled technique can also be applied to other applications such

as security systems, electronic device control and so on. The goal of this prosthetic

project is to reduce the hardware and software dependencies in controlling the prosthetic

arm. The user of the arm first needs to record the set of voice commands in order for the

system to respond. The system responds only to the actual user as a safety mechanism.

The code is integrated in to the hardware board once the recording is done. The robotic

arm is then able to follow the specific instructions. The user can add new commands to

the existing set. As the size of the board and data processing is very small the amount of

energy consumed will be very small.

 SimulinkTM blocks compatible with ArduinoTM hardware are created as part of

this thesis work. These blocks will help develop SimulinkTM designs without prior

knowledge of electronic components. The main contribution of this project is the creation

of SimulinkTM blocks and the development of voice controlled code for a prosthetic arm

compatible with ArduinoTM hardware.

1

CHAPTER 1.0

INTRODUCTION

 Voice-based control applications are gaining popularity with every passing year

as they reduce the human effort. They also reduce the time for processing, analyzing,

computing and executing various functions. The voice-based control is being used in

gadgets such as smartphones [1], speech to text applications [2] and so on.

A great deal of research work is [3a][3b][3c] going on to improve the prosthetic

arms which would replicate the movement of an actual hand. One of the most important

tasks that have to be performed to replicate the natural arm movement is the processing

of EMG signals resulting from muscle activities. At present, research [4] is being done on

this key aspect of data processing. Here data processing means collection of control pulse

originated in the brain and generated by the muscles responsible for the human motion.

Collection of these EMG signals using electrodes is a difficult task. The location of EMG

signals generation from muscles varies from person to person. These EMG signals serve

as input control data for the prosthetic arm control. The signal strength will be low and

the signal to noise ratio will be low for the EMG signals captured using surface

electrodes [5]. Therefore, the signal strength has to be improved and noise has to be

reduced before feeding it to control unit of prosthetic arm.

The requirement of signal processing will lead to extra circuitry [5]. Added

circuitry leads to power consumption. Personalized therapy or training is required before

starting to use the device. Based on the above facts the author has decided to proceed

2

with voice controlled prosthetic arm. The types of voice control systems available for use

and advantages of each system are explained below.

Voice control can be broadly classified in to two types as limited word based and

unlimited word based or sentence handlers. Limited word control based systems can

handle a few words ranging from processing tens of words to a maximum of a few

hundred words. Unlimited word based or sentence handlers typically can handle entire

sentences. Compared to word handling software, the sentence handling software requires

more complex algorithms to collect given commands, speech to text conversion, search

and convert text to speech. The entire process requires an internet connection [6].

The Internet connection is not required for limited word handler [7]. A minimal

set of hardware and software packages are required for implementing the limited word

based controller. Wrist movement control requires only few commands. All of the above

points are the major factors considered while implementing the limited word based

controller.

 The limited word based controller shown in Fig.24 is taken and first programmed

with the words or users choice. The procedure for uploading commands and downloading

them in to the ArduinoTM board is explained in detail in Appendix A1.

 The goals undertaken by the author of this work are explained in Section 1.2.

1.1 Problem Statement

 Classical control mechanism utilized to control a prosthetic arm movement

involves complex steps such as EMG signal capture, signal strength enhancement [5],

signal processing, etc.

3

EMG signal capturing also involves detection of motor points on the human arm

for placement of the electrodes. Surface electrodes are used to collect the EMG pulse

generated from the muscles. Placement of the electrodes varies from person to person as

each individual is unique. The signal strength of the EMG pulses captured will decrease

as it passes through the muscles tissue and skin at the time it reaches electrodes [5].

Therefore the signal strength has to be increased or amplified [5]. The signal processing

circuitry then processes the sensed EMG data and feeds it to the algorithm [8] which

controls the prosthetic device movement.

 The proposed method uses voice commands to control the prosthetic arm which

eliminates the step of EMG signal collection from muscles. Therefore the requirement of

the use of electrodes and signal processing circuitry is eliminated.

1.2 Thesis Goals

In the following, a list of specific thesis goals is presented:

 Develop SimulinkTM blocks of basic electronic components which can be

downloaded to an ArduinoTM microcontroller board.

 Develop voice controlled code to control the movement of a prosthetic arm.

 Carry out voice control hardware simulations on electronic components.

4

CHAPTER 2

SimulinkTM, ArduinoTM and how to acquire an ArduinoTM support package for

SimulinkTM are explained in this chapter.

2. 1 Introduction To SimulinkTM

 SimulinkTM, developed by MathWorks, is a data flow graphical programming

language tool for modeling, simulating and analyzing multidomain dynamic systems. Its

primary interface is a graphical block diagramming tool and a customizable set of block

libraries [9]. SimulinkTM tab in MatlabTMwindow is shown in Fig.1. SimulinkTM window

is shown in Fig.2.

Fig.1 Opening SimulinkTM from MatlabTM window.

5

Fig.2 SimulinkTM window.

A number of third party hardware and software products are compatible with

SimulinkTM. Some of the examples of libraries available in SimulinTM, are SimulinkTM,

Aerospace, Communication system, Computer vision system, DSP system, Embedded

coder, Fuzzy logic, HDL verifier, Image acquisition, Neural network, State flow, Vehicle

network and so on, shown in Fig.3.

6

Fig.3 Libraries in Simulink

TM
 window.

Each library consists of a number of basic blocks required for creating a

SimulinkTM design. The Communication System library consists of blocks shown in

Fig.4. Creation of customized blocks is explained in detail in topic 3.

7

Fig.4 Blocks of Communication System Library in Simulink

TM
 window.

2.2. Introduction To ArduinoTM

 ArduinoTM is an open-source physical computing platform based on a simple

microcontroller board, and a development environment for writing software for the board

[10]. ArduinoTM is an inexpensive, cross platform (i.e. operating system independent),

simple programming environment, open source hardware and software. The open source

software environment has led to the development of a pool of libraries by developers all

over the world.

 ArduinoTM GUI is shown in Fig.5. The list of examples which are available in

ArduinoTM is shown in Fig.6. A basic example of analog read in ArduinoTM

programming language is shown in Fig.7. ArduinoTM programming language consists of

8

two main functions namely setup() and loop(). The setup() is used for initialization of

data. The loop() is used for data manipulation to achieve the desired output.

Fig.5 GUI of ArduinoTM Software.

9

Fig.6 List of examples in ArduinoTM Software.

Fig.7 Analog read example in ArduinoTM Software.

10

2.3. Introduction To ArduinoTM compatibility in SimulinkTM

 The user has to make sure to install MatlabTMsoftware in the system which

consists of SimulinkTM package before going into this step. The steps of installing

ArduinoTM support package are given below:

i. Open the MatlabTMsoftware window and give the command “targetinstaller”.

ii. A new GUI will pop up shown in Fig.8 with options of installing target using

Internet and Folder.

iii. Recommended option is to select Internet and click on next.

iv. A list of all the hardware support packages will be displayed as shown in Fig.9.

v. Desired targets have to be selected and click on next.

vi. In the next window click on Install to complete the installation procedure.

vii. User can also download a support package from website [11].

viii. If the support package is downloaded the option of Folder has to be selected in

point ii and follow the instructions.

After completing 2.3 users can create customized blocks explained in detail in

Section 3.

Fig.8 Target-Installer window.

11

Fig.9 List of support packages supported by Matlab.

12

CHAPTER 3

In this chapter the author explains about basic requirements of the creation of a

Simulink
TM

 block and few customized blocks. The introductory part is common to all

the blocks.

3.1 Introduction To Creating Blocks In SimulinkTM

The advantage of creating serial data transmission, EEPROM, LCD display and

servo motor blocks is to create SimulinkTM designs without prior knowledge of electronic

components. The following is a detailed step-by-step procedure on how to develop a

SimulinkTM block.

Step1: Open the SimulinkTM in MatlabTM and select “New model” in SimulinkTM from

File tab's drop down menu as shown in Fig.10. Keyboard shortcut "ctrl + n" will also

create a new model.

Fig.10 New model selection window.

Step 2: Once a new model is selected the screen will appear as shown in Fig.11

13

Fig.11 New untitled window for block creation.

One should drag the S-Function builder block from the user defined functions tab in the

SimulinkTM library as shown in Fig.12 and drop it in the new window.

Fig.12 New window with S-Function Builder in it.

14

Step 3: One important thing one should check is whether the MatlabTM under use consists

of a predefined/inbuilt compiler or not, for compiling the C/C++ custom code. The

command to check the compiler availability in the MatlabTM command window is

mex -setup

It’s a simple way to know the availability of all the compilers in the system. Type this

command and press enter, a list of all the compilers present in the system will be

displayed. If there are inbuilt compilers available then select the desirable compiler for

compilation of the custom code by selecting the number corresponding to the list of

compilers and press enter. If there are no inbuilt compilers available, the compiler should

be first downloaded. This compiler performs the building of the wrapper file and other

supporting files for running the block on the hardware.

After typing mex -setup in the MatlabTM command window the message shown in Fig.13

will be displayed (Note: A space should be present between the mex and -setup).

Fig.13 mex –setup display message

15

One should press y and enter, to get a list of all the compilers available in the system as

shown in Fig.14.

Fig.14 List of all the compilers present in the system.

As there is only one compiler in the demonstration system, one available option in the

compiler’s list is displayed. If there are multiple compilers in a system then all of them

will be displayed. The number of the desirable compiler has to be given for compilation

of the custom code and press enter. This will make the compiler, selected as a default

compiler for compiling the custom codes. The compiler can be changed by selecting a

different compiler number.

Step 4: By double clicking the S-Function Builder icon as shown in the Fig.12, a new

pop up screen appears as shown in Fig.15.

16

Fig.15 S-Function Builder code and parameter filling window.

Fig.15 shows the window with multiple panes of control options where one should enter

information needed for defining the S-Function Builder block in order to build a

customized S-function. The information on the panes and the controls that they contain is

explained in detail including examples in the link [12]. For convenience this document

[12] is given in Appendix A2.

Step 5: A small overview of what should be placed under each tab shown in Fig.15 is

explained below.

17

Libraries Tab:

Under the Libraries tab in the right side corner one should place all the .h files that are

useful for the block creation. Note: All the .h files placed here should be placed in the

SimulinkTM path of the working directory to avoid recognition errors.

An example of how the .h files should be include is shown below

#ifndef MATLAB_MEX_FILE

#include <Arduino.h>

#include <math.h>

#include <eeprom.h>

#endif

Discrete Update tab:

The following code is placed in the Discrete update pane. The detailed explanation of

each of these lines is explained after the code.

if(xD[0]!=1)

{

 #ifndef MATLAB_MEX_FILE

 pinMode(pin[0],OUTPUT);

 #endif

xD[0]=1;

}

 The initial condition for the discrete state is 0 (this is set up by the initialization

pane). The first time this Discrete Update function is called xD[0] is equals to 0, and the

code inside the brackets following the “if” condition is executed. The last line inside the

18

brackets sets xD[0] to 1, which prevents anything inside the brackets from being executed

ever again.

The three central lines inside the brackets are:

ifndef MATLAB_MEX_FILE

pinMode(pin[0],OUTPUT);

endif

The "MATLAB_MEX_FILE” will be defined at compilation time by the MEX file. The

MEX file is generated from the S-Function Block. The conditional compilation

instruction # ifndef MATLAB_MEX_FILE prevents all the code that follows (until #

endif) from being included in the compilation when the MATLAB_MEX_FILE identifier

is defined. As a result, when generating the executable for the simulation, the central line

“pinMode(pin[0],OUTPUT);” will not be included in the compilation, and the resulting

code will look like this:

if (xD[0]!=1) {

xD[0]=1; }

This code will simply set xD[0] to 1 the first time it is executed and then does nothing

else ever again. On the other hand, when an executable that needs to run on the target

hardware is generated, the identifier “MATLAB_MEX_FILE” will not be defined, and as

a consequence the central line will be included in the compilation, and the resulting code

will look like this:

if (xD[0]!=1) {

pinMode(pin[0],OUTPUT);

xD[0]=1; }

19

This code will call the ArduinoTM “pinMode” function (shown in code above)

which will set the mode of the pin specified by the parameter pin[0] (12 in this case) to

“OUTPUT”. Pin[0] is set in the parameter pane. Detailed information about the pinMode

is explained in the reference link [13].

When writing the output block, it is a good idea to start with this block and replace the

line “pinMode(pin[0],OUTPUT);” with any initialization code one might need.

Initialization code here meant the code which assigns a particular pin to specific purpose.

Here pin[0] was assigned as an output pin. If no initialization code is needed, then only

pinMode(pin[0],OUTPUT) line should be deleted. Note that any initialization code that is

placed within the brackets but outside the conditional compilation directives #ifndef and

#endif will execute both in the MEX file (at the beginning of the simulation) and on the

target (when the target executable is launched on the target).

The code typed in the Discrete Update pane will end up inside the Update function of the

wrapper file. The fact that it will be placed inside a function means, among other things,

that any variable defined inside this code will not be accessible anywhere else (because

its scope will be limited to the function). On the other hand, global variables (defined in

the wrapper file, but outside of any function), will be accessible in the code typed in this

pane.

Outputs Tab:

The following code is placed inside the Outputs tab. Detailed explanation of each line of

this code and its purpose is explained in detail after the code.

if(xD[0]==1)

{

 /*don't do anything for MEX-file generation*/

 #ifndef MATLAB_MEX_FILE

20

 /* Whatever the functional code snippet or actual run code that one want to run on the

target an example is placed below*/

 digitalWrite(pin[0],in[0]); //Writing the data in in[0] to the pin[0]

 #endif

}

The Outputs update pane defines the actions that the block performs (in general

on its outputs), when it is executed. As for the discrete update case, one can type the code

directly in the edit field.

The first thing to notice is that the code in the brackets follows the condition

xD[0]==1. Since xD[0] is 0 at the beginning and is then set to 1 by the first discrete

update call. Therefore the code in the brackets is executed only after the initialization

code has already been executed.

 The second thing to notice is the ArduinoTM specific instruction

“digitalWrite(pin[0],in[0]);”, (which writes the content of the variable in[0] to the pin

specified by the parameter pin[0]) is wrapped up in the same conditional compilation

statement #ifndef MATLAB_MEX_FILE. This means that the MEX file generated for

simulation purposes does not include any output code, and therefore does not do

anything. Conversely, the executable that is generated for execution on the ArduinoTM

includes the digital write line. When this code is executed on the ArduinoTM, assuming

that in[0] is equal to 1 and pin[0] is equal to 12, a LED connected between the pin #12

and ground will light up.

When using this block as a starting point to create a driver (driver here meant

code section which performs a desired task), the ArduinoTM specific instruction

“digitalWrite(pin[0],in[0]);” (here data from in[0] is written to pin[0]) should be replaced

with a custom target specific code. The code typed in the Outputs pane will end up inside

the Outputs function of the wrapper file. The fact that it will be placed inside a function

21

means, that any variable defined inside this code will not be accessible anywhere else

(because its scope will be limited to the function). On the other hand, global variables

(defined in the wrapper file, but outside of any function), will be accessible in the code

typed in this pane.

These are the three main tabs which should be carefully watched. The rest of all the tabs

are explained in detail in the link provided, see [14]. For convenience this document [14]

is given in Appendix A2.

Step 6: Once the above steps are successfully completed then one should click on the

Build tab. If everything goes well and one has followed all the steps stated here, then

build success message will be displayed and one can see the built files in the Build Info

pane.

3.2 Serial Data Transmission Block

 The idea behind the creation of this block is to use it as a single point source to

read and write all the serial data required or produced by other components in a complex

design. The following section explains the details on how this block should be created.

Step 1 to step 3 of Section 3 are the common steps in creation of this block. Step 4 is a

very important step in the creation of this block. In this step a sample ArduinoTM serial

code was taken as a base reference [16]. The idea behind taking ArduinoTM code is to get

rid of any compatibility issues.

The data that has to be entered in each tab of the S-Function Builder is as follows

a. Initialization tab: Number of discrete states = 1, Discrete states IC = 0, Number of

Continuous states = 0, Continuous states IC = 0, Sample mode = discrete and

sample time value = 0.05.

22

b. Data Properties: Input ports, Output ports, Parameters and Data type attributes

have to assigned depending on the number of input and output connections to this

block.

c. Libraries: There are 3 major sections in this tab

i. Library/Object/Source files: This is the place where one should place the

path for reference libraries that have to be defined. This is an optional

field. If all the reference libraries of a particular block are present in

current working directory then this field can be left alone.

Example:

The Library/Object/Source files for the serial data transmission block are

C:\Users\Samanth\Desktop\Dr.Marco\aurdinofile\arduino-

1.0.3\libraries\SoftwareSerial\examples\SoftwareSerialExample

ii. Includes: All the include files have to be defined in here. One important

thing that has to be taken into consideration is all the include files must be

defined in between #ifndef MATLAB_MEX_FILE and #endif.

The contents of this particular block are

ifndef MATLAB_MEX_FILE

#include "SoftwareSerial.cpp"

extern SoftwareSerial mySerial(10, 11); // RX, TX

endif

iii. External function declaration: All the external function declarations have

to be defined in here.

23

d. Outputs: This is one section where part of the actual working code has to be

placed. The code which is placed under this section will execute once the code in

the Discrete Update section executes and sets the xD[0] = 1. The code under this

section will be the main executable code. The entire code has to be placed in

between if (xD[0]==1) {} and the main working code has to be placed in between

#ifndef MATLAB_MEX_FILE and #endif.

The code for this particular block is

 if (xD[0]==1)

 {

 /* don't do anything for mex file generation */

 # ifndef MATLAB_MEX_FILE

 if (mySerial.available())

 Serial.write(mySerial.read());

 if (Serial.available())

 mySerial.write(Serial.read());

 # endif

 }//end of if (xD[0]==1)

e. Continuous Derivatives: This is an optional section and is used to calculate

derivatives. This section was left alone for this block.

f. Discrete Update: This is the other section where the initialization part of the code

is present. The code execution first enters this block and performs all the

initializations. The entire code has to be placed in between if (xD[0]!=1){} and

the main initialization code has to be placed in between #ifndef

MATLAB_MEX_FILE and #endif.

The code for this particular block is

if (xD[0]!=1)

{

 /* don't do anything for MEX-file generation */

 # ifndef MATLAB_MEX_FILE

24

 // Open serial communications and wait for port to open:

 Serial.begin(57600);

 // Printing the Hello world

 Serial.println("Hello world!");

 // set the data rate for the SoftwareSerial port

 mySerial.begin(4800);

 mySerial.println("Good morning");

 # endif

 /* initialization done */

 xD[0]=1;

 }

3.3 EEPROM Block

 The idea behind the creation of this block is to use it as a single point source to

read and write data to a SD card (SD card is an EEPROM device) by other components in

a complex design. The following section explains the details on how this block should be

created. Step 1 to step 3 of Section 3 are the common steps in the creation of this block.

Step 4 is a very important step in the creation of this block. In this step, a sample

ArduinoTM EEPROM read/write code was taken as a base reference [16]. The idea

behind taking ArduinoTM code is to get rid of any compatibility issues.

The data that has to be entered in each tab of the S-Function Builder is as follows

a. Initialization tab: Number of discrete states = 1, Discrete states IC = 0, Number of

Continuous states = 0, Continuous states IC = 0, Sample mode = discrete and

sample time value = 0.05.

b. Data Properties: Input ports, Output ports, Parameters and Data type attributes

have to assigned depending on the number of input and output connections to this

block. By default Input ports and output ports are not assigned. Parameters tab

consists of one pin declaration with a data type unit8 and real complexity.

25

c. Libraries: There are 3 major sections in this tab

i. Library/Object/Source files: This is the place where one should place the

path for reference libraries that have to be defined. This is an optional area

as far as all the files are placed in the current working directory. For this

block this section was left alone.

ii. Includes: All the include files have to be defined in here. Include files

must be defined in between #ifndef MATLAB_MEX_FILE and #endif.

The contents of this particular block based on the Author’s example are:

ifndef MATLAB_MEX_FILE

include “Arduino.h”//Include the .h file

#include "EEPROM.cpp" //Include the CPP file

#include "SoftwareSerial.cpp"//Include the CPP file

uint8_t addr=0; //Global variable declaration

uint8_t val=4;

endif

iii. External function declaration: All the external function declarations have

to be defined in here. This section was left alone for this block.

d. Outputs: This is one section where part of the actual working code has to be

placed. The code which is placed under this section will execute once the code in

the Discrete Update section executes and sets the xD[0] = 1. The code under this

section will be the main executable code. Two important things under this section

are the entire code has to be placed in between if (xD[0]==1) {} and the main

working code has to be placed in between #ifndef MATLAB_MEX_FILE and

#endif.

The contents of this particular block are

/* wait until after initialization is done */

if (xD[0]==1)

{

26

 /* don't do anything for mex file generation */

 # ifndef MATLAB_MEX_FILE

 begin: //Switch to case statement

 EEPROM.write(addr,val); //write function writing data

“val” to address location “addr”

 delay(100); //Delay of 100 milliseconds

 Serial.print(addr); //Printing the Address location

 Serial.print("\t"); //Printing a tab space

 Serial.print(val); // Printing the value

 val = EEPROM.read(addr); // Read function reading a

value from address location “addr”

 delay(100);

 Serial.print(addr);

 Serial.print("\t");

 Serial.print(val);

 addr = addr+1; //Incrementing the address value by 1

 if(addr==512) //Checking for address value = 512 and if

a match is found then resetting the address to zero again

 {

 addr = 0;

 }

 else

 {

 goto begin; //If the address hasn’t reached the 512

value then continue the process of writing and reading

 }

 # endif

}

e. Continuous Derivatives: This is an optional section and is used to calculate

derivatives. This section was left alone for this block.

f. Discrete Update: This is the other section where the initialization part of the code

was present. The execution of the code first enters in to this block and performs

all the initializations. One important thing under this section the entire code has to

be placed in between if (xD[0]!=1){} and the main initialization code has to be

placed in between #ifndef MATLAB_MEX_FILE and #endif.

27

The contents of this particular block are

if (xD[0]!=1) {

 # ifndef MATLAB_MEX_FILE

 Serial.begin(9600); //Setting the baudrate for serial

communication

 # endif

 xD[0]=1;

}

 One special case of the EEPROM module is the use of an SD-card module. This

module can be used with generated block in the same fashion. The SD card module has 8

pins which have to be connected to the UNO board. The connections should be done

using a bread board. The connections are following

SD card -------> UNO

5v 5v

gnd gnd

MOSI 11 pin

SS 10 pin

SCK 13 pin

MISO 12 pin

The SD card module pin configuration is shown in Fig.16.

Fig.16 SD card module

For purchasing this board and spec details of this board use this reference [15].

28

3.4 LCD display Block

 The idea behind the creation of this block is to use it as a single point source to

display the data produced by other components in a SimulinkTM model. This was also

created as a starting point for developing the touch interface for users, similar to a

smartphone. One major difference between other blocks and this particular block is it

required an ArduinoTM Mega board. The mounting of the LCD interface on the

ArduinoTM Mega board should be done as shown in Fig [19].

The following section explains the details on how this block should be created.

Step 1 to step 3 of Section 3 are the common steps in creation of this block. Step 4 is a

very important step in the creation of this block. In this step a sample ArduinoTM LCD

code was taken as a base reference[16]. The idea behind taking ArduinoTM code is to get

rid of any compatibility issues.

The data that has to be entered in each tab of the S-Function Builder is as follows

a. Initialization tab: Number of discrete states = 1, Discrete states IC = 0, Number of

Continuous states = 0, Continuous states IC = 0, Sample mode = discrete and

sample time value = 0.05.

b. Data Properties: Input ports, Output ports, Parameters and Data type attributes

have to be assigned depending on the number of input and output connections to

this block. For the demo block the inputs and outputs are left alone. The

Parameters tab consists of one pin assigned with data type unit8 and real

complexity.

c. Libraries: There are 3 major sections in this tab

29

i. Library/Object/Source files: This is the place where one should place the

path for reference libraries have to be defined. This is an optional field.

This can be left blank if all the files of library are present in the working

directory of Matlab.

Example:

The path for this particular block in the demo system of author is

C:\Users\Samanth\Desktop\Professors\Dr.Marco\aurdino file\arduino-

1.0.3\libraries\UTFT

ii. Includes: All the include files have to be defined in here. One important

item that has to be taken in to consideration is that all the include files

must be defined in between #ifndef MATLAB_MEX_FILE and #endif.

The contents of this particular example demo block of author are

ifndef MATLAB_MEX_FILE

#include "UTFT.h" //Including the header and CPP files

#include "UTFT.cpp"

#include "DefaultFonts.c"

#include "UTouch.h"

#include "UTouch.cpp"

extern uint8_t SmallFont[]; //Declaring the global variables

extern uint8_t BigFont[];

extern uint8_t SevenSegNumFont[];

UTFT myGLCD(ITDB32S,38,39,40,41); //1st

parameter=LCD model name; 2nd = ReadSelect pin, Write

Pin, 3rd=Chip Select pin;4th=Reset Pin; 5th=Serial pin

endif

iii. External function declaration: All the external function declarations have

to be defined in here. This section was left alone for this block.

d. Outputs: This is one section where part of the actual working code has to be

placed. The code which is placed under this section will execute once the code in

30

the Discrete Update section executes once and sets the xD[0] = 1. The code under

this section will be the main executable code. Placement of code in between if

(xD[0]==1) {} is very important.

 The contents of this example demo block of author are

if (xD[0]==1)

{

 # ifndef MATLAB_MEX_FILE

 int x, y; //Local variable declaration; these variables can be used

only in this section of code

char stCurrent[20]=""; //Declaring a null character array of size 20

int stCurrentLen=0;

char stLast[20]="";

void updateStr(int val) //String update function

{

 if (stCurrentLen<20) //Max size of string to enter this loop is 20

 {

 stCurrent[stCurrentLen]=val;

 stCurrent[stCurrentLen+1]='\0';

 stCurrentLen++;

 myGLCD.setColor(0, 255, 0); //1st parameter = red color, 2nd

parameter = green color and 3rd parameter = blue color

 myGLCD.print(stCurrent, LEFT, 224); //printing the current

value of string on left side of screen with a color code of 224

 }

 else //If the string length is greater than 20 enter this loop

 {

 myGLCD.setColor(255, 0, 0); //setting the text color on screen

 myGLCD.print("BUFFER FULL!", CENTER, 192); //As the

string size has crossed the limit of 20 warning message is

displayed

 delay(500); //Waiting for 500 milliseconds

 myGLCD.print(" ", CENTER, 192); //Clearing the screen

 delay(500);

 myGLCD.print("BUFFER FULL!", CENTER, 192); //Again

printing the warning message to create a visual flash effect

 delay(500);

 myGLCD.print(" ", CENTER, 192);

 myGLCD.setColor(0, 255, 0);

31

 } //end of else

} //end of void updateStr(int val)

 if(pin[0]==1) //If the input pin value = 1 then enter loop

 {

 myGLCD.setColor(0, 255, 0);

 myGLCD.setBackColor(0, 0, 0); //Intial setting of

background color on LCD scrren

 myGLCD.fillScr(255,160,255); //Fill the entire screen with

selected color combination passed as arguments

 delay(1500);

 myGLCD.fillScr(VGA_RED); //Filling the screen with Red

color

 delay(2500);

 myGLCD.setXY(0,0,240,320); //Setting the XY coordinates

of the screen. Coordinates x1=0,Y1=0,X2=240,Y2=320

 delay(2500);

 myGLCD.fillScr(VGA_BLACK);

 delay(2500);

 myGLCD.setFont(BigFont); //Setting the Big Font format

 myGLCD.print(" SAMANTH", CENTER, 0);

//Displaying the string SAMANTH at the center of the

LCD

 delay(3000);

 myGLCD.fillScr(VGA_GREEN); //Filling the screen with

Green color

 delay(2500);

 myGLCD.print("DR.MARCO", CENTER, 16);

//Displaying the string DR.MARCO at the center of the

LCD

 delay(2500);

 myGLCD.fillScr(VGA_BLUE); //Filling the screen with

Blue color

 delay(2500);

 myGLCD.print("@ISU", CENTER, 32); //Displaying the

string @ISU

 delay(2500);

 myGLCD.fillScr(VGA_AQUA); //Filling the screen with

AQUA color

 delay(2500);

32

 myGLCD.print("THANKYOU DR", CENTER, 64);

 delay(2500);

 myGLCD.print("FOR BELIEVING ME", CENTER, 80);

 delay(2500);

 myGLCD.fillScr(VGA_OLIVE);

 delay(1500);

 myGLCD.printNumI(11, 30, 30, 2, 0);

 delay(1500);

 myGLCD.setFont(BigFont);

 myGLCD.print(" !\"#$%&'()*+,-./", CENTER, 0); //All

the print commands will print the string passed as first

argument at the second argument (i.e.CENTER here)

location; 3rd parameter=degrees

 myGLCD.print("0123456789:;<=>?", CENTER, 16);

 myGLCD.print("@ABCDEFGHIJKLMNO", CENTER,

32);

 myGLCD.print("PQRSTUVWXYZ[\\]^_", CENTER,

48);

 myGLCD.print("`abcdefghijklmno", CENTER, 64);

 myGLCD.print("pqrstuvwxyz{|}~ ", CENTER, 80);

 myGLCD.setFont(SmallFont);

 myGLCD.print(" !\"#$%&'()*+,-./0123456789:;<=>?",

CENTER, 120);

myGLCD.print("@ABCDEFGHIJKLMNOPQRSTUVWX

YZ[\\]^_", CENTER, 132);

 myGLCD.print("`abcdefghijklmnopqrstuvwxyz{|}~ ",

CENTER, 144);

 myGLCD.setFont(SevenSegNumFont);

 myGLCD.print("0123456789", CENTER, 190);

 delay(2500);

 myGLCD.clrScr();

 myGLCD.printNumF(1988,2,CENTER,0);

 delay(3500);

 } //end of if(pin[0]==1)

 //digitalWrite(pin[0],in[0]);

 # endif

33

}//end of if (xD[0]==1)

e. Continuous Derivatives: This is an optional section and is used to calculate

derivatives. This section was left alone for this block.

f. Discrete Update: This is the other section where the initialization part of the code

was present. The execution of the code first enters in to this block and performs

all the initializations. At the end of this block the value of xD[0] is made equal to

1. The main initialization code has to be placed in between #ifndef

MATLAB_MEX_FILE and #endif. The drawButtons() contents in this block are

required for future work of creating the buttons on the touch screen to make it an

interactive user interface. Therefore for this demo purpose the user can remove

the entire drawButtons() code in between the #ifndef and #endif statements.

 The contents of this demo example block of author are

 if (xD[0]!=1) {

 /* don't do anything for MEX-file generation */

 # ifndef MATLAB_MEX_FILE

 myGLCD.InitLCD(); //Initializing LCD screen

 myGLCD.clrScr(); //Clearing screen to obtain blank screen

 # endif

 /* initialization done */

 xD[0]=1;

}

LCD consists of 40 pins. It is connected to ArduinoTM Mega board using a special

shield. The LCD cannot be directly placed on top of Mega board. LCD shield board is

connected to the Mega board. On top of the shield board there is a slot of 40 pins and the

LCD has to be connected to it. The numbering on the shield should match the numbering

34

on the LCD. The way in which the LCD board was connected to the ArduinoTM Mega

board is shown pictorially in the Fig.17, Fig.18, Fig.19.

Fig.17 LCD Module top view with 40 pins on left side

35

Fig.18 LCD shield module on right and Mega board on left

Fig.19 LCD module connected to shield and shield connected to Mega board

36

3.5 SERVO Motor Block

 The idea behind the creation of this block is to use it as a single point source to

use a servo motor by other components in a SimulinkTM design. The following section

explains the details on how this block should be created. Step 1 to step 3 of Section 3 are

the common steps in creation of this block. Step 4 is very important step in creation of

block. In this step a sample ArduinoTM Servo sweep code was taken as a base reference

[16]. The idea behind taking ArduinoTM code is to get rid of any compatibility issues.

The data that has to be entered in each tab of the S-Function Builder is as follows

a. Initialization tab: Number of discrete states = 1, Discrete states IC = 0, Number of

Continuous states = 0, Continuous states IC = 0, Sample mode = discrete and

Sample time value = 0.01.

b. Data Properties: Input ports, Output ports, Parameters and Data type attributes

have to assigned depending on the number of input and output connections to this

block. An input port named “pos” was assigned to this block to serve as an input

source. Whatever may be the value of this pos it will be copied in to a localpos

variable. Parameters tab consists of one pin declaration with a data type unit8 and

real complexity.

c. Libraries: There are 3 major sections in this tab

i. Library/Object/Source files: This is the place where one should place the

path for reference libraries have to be defined. This is an optional area as

far as all the files are placed in the current working directory. This is left

alone for this block.

37

ii. Includes: All the include files have to be defined in here. One important

thing that has to be taken in to consideration is all the include files must be

defined in between #ifndef MATLAB_MEX_FILE and #endif.

The contents of this demo example block of author are

#ifndef MATLAB_MEX_FILE

#include <Servo.cpp>

#include <Servo.h>

Servo myservo; // object creation for class Servo

#endif

iii. External function declaration: All the external function declarations have

to be defined in here. This section was left alone for this block.

d. Outputs: This is one section where part of the actual working code has to be

placed. The code which is placed under this section will execute once the code in

the Discrete Update section executes once and sets the xD[0] = 1. The code under

this section will be the main executable code. There are couple of important

things under this section the entire code has to be placed in between if (xD[0]==1)

{} and the main working code has to be placed in between #ifndef

MATLAB_MEX_FILE and #endif.

The contents of this particular section of this author’s example block are

if(xD[0]==1)

{

 /*don't do anything for MEX-file generation*/

 #ifndef MATLAB_MEX_FILE

 int localpos =pos[0]; //Assigning the value of pos[0] into localpos

 myservo.attach(9);

 for(localpos = 0; localpos < 180; localpos += 1) // goes from 0

degrees to 180 degrees

 { // in steps of 1 degree

38

 myservo.write(localpos); // tell servo to go to position in

variable 'pos'

 delay(15); // waits 15ms for the servo to reach the

position

 }

 for(localpos = 180; localpos >=1; localpos -=1) // goes from

180 degrees to 0 degrees

 {

 myservo.write(localpos); // tell servo to go to position in

variable 'pos'

 delay(15); // waits 15ms for the servo to reach the

position

 }

#endif

}

e. Continuous Derivatives: This is an optional section and is used to

calculate derivatives. This section was left alone for this block.

f. Discrete Update: This is the other section where the initialization part of

the code was present. The execution of the code first enters in to this block

and performs all the initializations. There are couple of important things

under this section the entire code has to be placed in between if

(xD[0]!=1){} and the main initialization code has to be placed in between

#ifndef MATLAB_MEX_FILE and #endif.

The contents of this particular section for this block are

if(xD[0]!=1)

{

 #ifndef MATLAB_MEX_FILE

 #endif

xD[0]=1;

}

The servo motor consists of three wires of colors brown, red, and orange. The red

wire has to be connected to the 5V supply of the UNO board. The Brown wire has to be

39

connected to the GND pin of UNO board. The Orange wire has to be connected to pin 9

of UNO board. The orange wire connection can vary depending on user on which pin one

wants the output and rest of two are common. The connection of the servo motor and

UNO board are shown in the Fig.20.

Fig.20 Servo motor connection to UNO board

3.6 VOICE CONTROLLED BLOCK

 This block was created to control a servomotor using voice commands. The idea

behind the creation of this block is to showcase the voice control capability of the motors

in a typical prosthetic arm. The code in the block can be expanded to add more

components. Step 1 through step 3 of Section 3 is the common steps in creation of this

40

block. The rest of the steps as stated in Section 3 vary in creation of this block. The

EasyVR access demo code in the ArduinoTM example set [16] is taken as a base reference

in the creation of this block. The idea behind taking ArduinoTM code is to get rid of any

compatibility issues.

The data that has to be entered into each tab of the S-Function Builder pane is as follows

a. Initialization tab: This tab consists of values of S-Function settings. Number of

discrete states equal to 1, Discrete states IC equal to 0, Number of continuous

states equal to 0, Continuous states IC equal to 0, Sample mode equal to Discrete,

Sample time value equal to 0.05. In this section almost all the parameters are

constant only value of interest is Sample time value it can be increased or

decreased depending on speed one wants. With the increase in the Sample time

value the frequency decreases and vice versa.

b. Data Properties tab: This tab consists of four sub tabs Input ports, Output ports,

Parameters and Data type attributes. Depending on the input and output blocks

that are connected to this block one should add the number of inputs or outputs.

The contents for this block are shown in Fig.21, Fig.22, Fig.23.

41

Fig.21 Input ports tab contents

Fig.22 Output ports tab contents

Fig.23 Parameters tab contents

c. Libraries tab: This tab plays a vital role. A lot of errors will arise while building

the block due to misplacement of contents required for proper working of the

block. This tab consists of 3 sub sections namely Library/Object/Source files,

External Function declarations and Includes. Includes section is a mandatory

section the rest of the two sections are optional and can be left alone. The contents

of the include section of the example block demonstrated by author consist of

42

 #include "EasyVRBridge.cpp" //including the C++ file

#include "Servo.cpp" //including the C++ file
SoftwareSerial port(12, 13); // Function declaration with RX, TX as
inputs
EasyVR easyvr(port); // Function declaration with port
variable as input
bool checkMonitorInput(); // Function declaration
int8_t set = 0; // Global variable
int8_t group = 0; // Global variable used to define command group
number
uint32_t mask = 0; // Global variable used in discrete update &
output blocks
uint8_t train = 0; // Global variable to hold value of number times
command is trained
char name[32]; // character array
int pos = 0; // variable to store the servo position
bool useCommands = true;
EasyVRBridge bridge; //creating a class object to access
EasyVRBridge class elements
Servo myservo; //creating a class object to access Servo class
elements
#define SND_Access_denied 1 //defining the variables used
by the board to say back these voice commands to user
#define SND_Access_granted 2
#define SND_Hello 3
#define SND_Please_repeat 4
#define SND_Please_say_your_password 5
#define SND_Please_talk_louder 6
endif

d. Outputs Tab: The code segment which is responsible for data manipulation to

produce the intended result/ output is placed inside this tab. The variables which

are used in this tab along with Discrete Update tab should be declared as global

variables. The function definitions should also be defined as global definitions if

they are used by both Outputs Tab and Discrete Update tab. The contents of this

tab should be placed inside the

if(xD[0]==1)

{

#ifndef MATLAB_MEX_FILE

// Actual working code should be placed here.

#endif

}

43

The example block explained by author consists of the following code segment in

the Outputs Tab.

/* wait until after initialization is done */
if (xD[0]==1)
{
 /* don't do anything for mex file generation */
 # ifndef MATLAB_MEX_FILE
 int idx_cmd;
 int idx_pwd;
 easyvr.setPinOutput(EasyVR::IO1, HIGH); // LED on (listening)
 Serial.println("Say a name in Group 1");
 easyvr.recognizeCommand(1); // recognise command in group 1
 while (!easyvr.hasFinished()); // wait for user name
 easyvr.setPinOutput(EasyVR::IO1, LOW); // LED off
 idx_cmd = easyvr.getCommand(); // get recognised user name
 if (idx_cmd >= 0)
 {
 Serial.print("Name: ");
 if (easyvr.dumpCommand(1, idx_cmd, name, train))
 Serial.println(name); //this dumps the trained data in to serial
terminal for display.
 else
 Serial.println();
 // ask for password in the next command

 easyvr.playSound(SND_Please_say_your_password , EasyVR::VOL_FULL);
 easyvr.setPinOutput(EasyVR::IO1, HIGH); // LED on (listening)
 Serial.println("Say the password");
 easyvr.recognizeCommand(EasyVR::PASSWORD); // set group 16
 while (!easyvr.hasFinished()); // wait for password
 easyvr.setPinOutput(EasyVR::IO1, LOW); // LED off
 idx_pwd = easyvr.getCommand(); // get recognised password
 if (idx_pwd >= 0)
 {
 Serial.print("Password: "); //this dumps the trained password in to
system

 if (easyvr.dumpCommand(EasyVR::PASSWORD, idx_pwd, name, train))
 {
 Serial.print(" = ");
 Serial.println(name);
 }
 else
 Serial.println();
 if (idx_pwd == idx_cmd) // index of username and password are the
same, access granted
 {
 Serial.println("Access granted");
 easyvr.playSound(SND_Access_granted , EasyVR::VOL_FULL);
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180
degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to
position in variable 'pos'

 delay(15); // waits 15ms for the servo
to reach the position

44

 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0

degrees
 {
 myservo.write(pos); // tell servo to go to position

in variable 'pos'
 delay(15); // waits 15ms for the servo to

reach the position
 }

 }
 else // index of username and password differ, access is denied
 {
 Serial.println("Access denied");
 easyvr.playSound(SND_Access_denied , EasyVR::VOL_FULL);
 }
 }
 int16_t err = easyvr.getError();
 if (easyvr.isTimeout() || (err >= 0)) // if password timeout or access
is denied go in to this loop
 {
 Serial.println("Error, try again...");
 easyvr.playSound(SND_Access_denied , EasyVR::VOL_FULL);
 }
 }
 else
 {
 if (easyvr.isTimeout())
 Serial.println("Timed out, try again...");
 int16_t err = easyvr.getError();
 if (err >= 0)
 {
 Serial.print("Error ");
 Serial.println(err, HEX);
 }
 }

 # endif
}//end of if (xD[0]==1)

e. Continuous Derivatives tab: This is an optional tab. If the user intended to

perform derivative calculations this tab should be used. For this example case

author is leaving this tab blank.

f. Discrete Update tab: This tab consists of data initialization code. All the variables

are initialized here. The code execution enters in to the code defined in this tab.

At the end of the code in this block the value of xD[0] is made equal to one from

zero. The contents of this block should be placed inside the

45

 if(xD[0]!=1)

{

#ifndef MATLAB_MEX_FILE

// Actual initalization code should be placed here.

#endif

xD[0]=1;

}

The example block explained by author consists of the following code segment in

the Discrete Update Tab.

if (xD[0]!=1)

{

 # ifndef MATLAB_MEX_FILE

 // bridge mode?

 if (bridge.check()) //checking whether the bridging between the

UNO and EasyVR board is formed properly

 {

 cli();

 bridge.loop(0, 1, 12, 13);

 }

 Serial.begin(9600); //setting the serial port baudrate

 port.begin(9600); //beginning the serial port with 9600 baud

 myservo.attach(9); //Servvo motor was attached to pin 9 on UNO

board

 if (!easyvr.detect()) //Searching for the EasyVR board

 {

 Serial.println("EasyVR not detected!");

 for (;;); //Waiting in a continuous loop

 }

 easyvr.setPinOutput(EasyVR::IO1, LOW); //initializing the

output to zero

 Serial.println("EasyVR detected!"); //Print command on

successful EasyVR detection

 easyvr.setTimeout(5);

 easyvr.setLanguage(EasyVR::ENGLISH); //Selecting the language

as English

 int16_t count = 0;

 if (easyvr.getGroupMask(mask)) // get trained user names and

passwords

 {

 uint32_t msk = mask;

 for(group = 0; group <= EasyVR::PASSWORD; ++group, msk >>= 1)

 {

 if (!(msk & 1)) continue; //This for making sure msk

variable is not equal to zero; only when the msk variable is not

equal to zero then the rest of the body in for loop executes.

46

 if (group == EasyVR::TRIGGER) //Checking if the group value

equal to the trigger word or username

 Serial.print("Trigger: ");

 else if (group == EasyVR::PASSWORD) //Checking if the group

value equal to password

 Serial.print("Password: ");

 else //This loop print “Group groupnumber:” Ex: Group1:

 {

 Serial.print("Group ");

 Serial.print(group);

 Serial.print(": ");

 }

 count = easyvr.getCommandCount(group); //Getting the number

of commands in the group. Ex: Number of commands in group 1

 Serial.println(count); //Printing the command count

 for (int8_t idx = 0; idx < count; ++idx) //This loop helps

in looping through all the elements in the group

 {

 if (easyvr.dumpCommand(group, idx, name, train)) //This

loop is used for printing the list of all the commands in a group

and list of trained commands

 {

 Serial.print(idx); //Index value

 Serial.print(" = ");

 Serial.print(name); //Name of the command

 Serial.print(", Trained ");

 Serial.print(train, DEC); //Printing the trained

commands

 if (!easyvr.isConflict()) //checking for repeatability

of the same word or command

 Serial.println(" times, OK");

 else

 {

 int8_t confl = easyvr.getWord();

 if (confl >= 0)

 Serial.print(" times, Similar to Word ");

 else

 {

 confl = easyvr.getCommand();

 Serial.print(" times, Similar to Command ");

 }

 Serial.println(confl);

 }

 }

 }

 }

 }

 easyvr.setLevel(EasyVR::EASY); //Level of detection can be

selected as HARDER or EASY or MEDIUM

47

 easyvr.playSound(SND_Hello, EasyVR::VOL_FULL);

 # endif

 /* initialization done */

 xD[0]=1;

}

 The EasyVR shield is used as a limited word handler board in this experiment. It

has to be connected on top of the UNO board. The EasyVR shield pin configuration is

similar to the UNO board. Therefore, to connect both of these boards one has to make

sure that EasyVR shield pins coincide with the UNO board pins and push it on top. The

connection of EasyVR shield on top of Arduiino UNO will appear as shown in Fig.24

and Fig.25. The EasyVR shield has an inbuild microphone provided to it. This

microphone should not be removed at any point of time. The EasyVR shield consists of

an external headphone jack to which s head set can be connected. The process of loading

commands into the EasyVR shield is explained in detail in the Appendix A1.

Fig.24 EasyVR shield mounted on top of ArduinoTM UNO

48

Fig.25 Side view of UNO board on bottom and EasyVR board on top

49

CHAPTER 4

4.1 CONCLUSION

This thesis provides a base overview of SimulinkTM, ArduinoTM and how to

integrate ArduinoTM in to SimulinkTM. Based on these initial introductions, the author has

explained a mechanism that has to be followed for creating customized SimulinkTM

blocks. A few generic examples of blocks are explained in detail with code segments

involved and hardware connections required. The main objective of this code is to control

a prosthetic arm with voice commands. The author has used a servo motor to demonstrate

the control of it using the voice command. The servo motor control using the voice

command is explained in detail in Section 3.6 with circuit connection and code segments.

The number of components controlled by voice can be increased by adding code

segments of particular component.

4.2 FUTURE WORK

Future work will focus on the LCD display block and the Voice controlled block.

The LCD block can be modified to take touch input similar to smartphones. The voice

controlled block’s code segment can be enhanced to integrate the internet connection.

The author’s idea was to create not only a prosthetic arm with voice control but also an

interface which can serve as a smart gadget. This smart gadget will also serve as a

confidence booster or a morale lifter apart from serving as a prosthetic arm.

50

REFERENCES

[1] Iphone, Samsung mobiles, Android phones.

[2] Goolgle API, IOS API and Android API for speech to text and text to speech

conversion.

[3a] http://www.dekaresearch.com/deka_arm.shtml as of 12/9/2014.

[3b] http://www.chalmers.se/en/news/Pages/Mind-controlled-prosthetic-arms-that-work-

in-daily-life-are-now-a-reality.aspx as of 12/9/2014.

[3c] http://www.neurotechreports.com/pages/darpaprosthetics.html as of 12/9/2014.

[4] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1455479/ as of 12/9/2014.

[5] REAL-TIME Semg-BASED FINGER JOINT ANGLE CONTROL FOR A SMART

PROSTHETIC HAND, PAVAN KUMAR YARLAGADDA,ISU, MAY 2013.

[6] Digital assistants Siri, Google Now , ECHO, Cortana.

[7]http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Shields/EasyVR_User_

Manual_3.3.pdf as of 12/9/2014.

[8] CHARACTERIZATION OF MYOELECTRIC SIGNALS USING SYSTEM

IDENTIFICATION TECHNIQUES. Jeffrey T. Bingham, Marco P. Schoen, 2004 ASME

International Mechanical Engineering Congress

Anaheim, California, November 13-19, 2004.

[9] http://en.wikipedia.org/wiki/Simulink as of 12/9/2014.

[10] http://arduino.cc/en/Guide/Introduction as of 12/9/2014.

[11] http://www.mathworks.com/hardware-support/arduino-Simulink.html as of

12/9/2014.

[12] http://www.mathworks.com/help/Simulink/sfg/s-function-builder-dialog-box.html as

of 12/9/2014.

[13] http://arduino.cc/en/Reference/pinMode as of 12/9/2014.

http://www.dekaresearch.com/deka_arm.shtml
http://www.chalmers.se/en/news/Pages/Mind-controlled-prosthetic-arms-that-work-in-daily-life-are-now-a-reality.aspx
http://www.chalmers.se/en/news/Pages/Mind-controlled-prosthetic-arms-that-work-in-daily-life-are-now-a-reality.aspx
http://www.neurotechreports.com/pages/darpaprosthetics.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1455479/
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Shields/EasyVR_User_Manual_3.3.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Shields/EasyVR_User_Manual_3.3.pdf
http://en.wikipedia.org/wiki/Simulink
http://arduino.cc/en/Guide/Introduction
http://www.mathworks.com/hardware-support/arduino-Simulink.html
http://www.mathworks.com/help/Simulink/sfg/s-function-builder-dialog-box.html
http://arduino.cc/en/Reference/pinMode

51

[14] http://www.mathworks.com/help/Simulink/sfg/s-function-builder-dialog-box.html as

of 12/9/2014.

[15] http://www.dx.com/p/produino-ams1117-3-3v-sd-card-slot-reader-module-w-sd-spi-

works-with-arduino-official-boards-297664#.VGwzZ8nk91U as of 12/9/2014.

[16] C:\Program Files (x86)\Arduino\examples (local copy of Arduino in computer)

http://www.mathworks.com/help/Simulink/sfg/s-function-builder-dialog-box.html
http://www.dx.com/p/produino-ams1117-3-3v-sd-card-slot-reader-module-w-sd-spi-works-with-arduino-official-boards-297664#.VGwzZ8nk91U
http://www.dx.com/p/produino-ams1117-3-3v-sd-card-slot-reader-module-w-sd-spi-works-with-arduino-official-boards-297664#.VGwzZ8nk91U

52

APPENDIX A

A1 – Steps involved in new Voice command creation

Steps for creating and uploading the voice commands in to EasyVR shield:

i. To load the commands in to the EasyVR shield one has to first download the

EasyVR commander software and it can be downloaded from the following

site http://www.veear.eu/downloads/

ii. One the package was downloaded successfully it has to be installed in the

computer.

iii. After the installation procedure is completed the if one double clicks on the

EasyVR commander icon a GUI shown in Fig.26 will appear

Fig.26 EasyVR commander GUI

iv. The EasyVR shield connected on top of UNO board should be connected to

computer now.

v. After connecting it to the computer change the jumper pin on the J12 on the

EasyVR shield to PC.

vi. After that check the com port to which the UNO board is connected to the

system by opening the device manager and ports section in it.

vii. Select the same port name in the GUI of EasyVR commander placed below

the Tools option.

viii. After that click on Connect button below the File tab.

http://www.veear.eu/downloads/

53

ix. Now a connection will form between the EasyVR and the GUI.

x. Click on the Group1 and select the option of Add command (4th icon from

COM Port selected) and a new empty box will appear.

xi. In the empty box type in the command that you want to use and click enter

after completing.

xii. Repeat the steps x and xi for adding more commands.

xiii. Once the commands are given the user has to train command so that system

can recognize his/her voice.

xiv. To perform the training click on the command and the click on the Train

command tab (3rd right to the add command).

xv. A new pop up window will appear asking one to say the command and the

command should be recorded twice.

xvi. On successful recording of all the commands click on the disconnect icon

placed next to connect icon.

xvii. Now the jumper on the EasyVR shield has to be removed from PC and

should be placed in to the SW pin section.

xviii. Now the EasyVR shield is ready with the new set of commands.

A2 – Detailed Information on S-Function Builder contents

About S-Function Builder

The S-Function Builder dialog box enables you to specify the attributes of an S-function

to be built by an S-Function Builder block. To display the dialog box, double-click the S-

Function Builder block icon or select the block and then select Open Block from the

Edit menu on the model editor or the block's context menu.

http://www.mathworks.com/help/simulink/slref/sfunctionbuilder.html

54

The dialog box contains controls that let you enter information needed for the S-Function

Builder block to build an S-function to your specifications. The controls are grouped into

panes. See the following sections for information on the panes and the controls that they

contain.

Note The following sections use the term target S-function to refer to the S-

55

function specified by the S-Function Builder dialog box.

See Example: Modeling a Two-Input/Two-Output System for an example showing how

to use the S-Function Builder to model a two-input/two-output discrete state-space

system.

Parameters/S-Function Name Pane

This pane displays the target S-function name and parameters and contains the following

controls.

S-function name

Specifies the name of the target S-function.

S-function parameters

This table displays the parameters of the target S-function. Each row of the table

corresponds to a parameter, and each column displays a property of the parameter as

follows:

 Name — Name of the parameter. Define and modify this property from the

Parameters Pane.

 Data type — Lists the data type of the parameter. Define and modify this

property from the Parameters Pane.

 Value — Specifies the value of the parameter. Enter a valid MATLAB®

expression in this field.

Build/Save

Use this button to generate the C source code and executable MEX file from the

information you entered in the S-Function Builder. If the button is labeled Build, the S-

Function Builder generates the source code and executable MEX file. If the button is

labeled Save, it generates only the C source code. Use the Save code only check box on

the Build Info pane to toggle the functionality of this button.

Hide/Show S-function editing tabs

Use the small button at the bottom-right of the Parameters/S-Function Name pane, to

collapse and expand the bottom portion of the S-Function Builder dialog box.

Port/Parameter Pane

This Port/Parameter pane on the left displays the ports and parameters that the dialog

box specifies for the target S-function.

The pane contains a tree control whose top nodes correspond to the target S-function

input ports, output ports, and parameters, respectively. Expanding the Input Ports, Output

Ports, or Parameter node displays the input ports, output ports, or parameters,

http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#bq2ri9_-1
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-107602
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-107602

56

respectively, specified for the target S-function. Selecting any of the port or parameter

nodes selects the corresponding entry on the corresponding port or parameter

specification pane.

Initialization Pane

The Initialization pane allows you to specify basic features of the S-function, such as the

width of its input and output ports and its sample time.

The S-Function Builder uses the information that you enter on this pane to generate the

mdlInitializeSizes callback method. The Simulink® engine invokes this method

during the model initialization phase of the simulation to obtain basic information about

the S-function. (See Simulink Engine Interaction with C S-Functions for more

information on the model initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states

Number of discrete states in the S-function.

Discrete states IC

Initial conditions of the discrete states in the S-function. You can enter the values as a

comma-separated list or as a vector (e.g., [0 1 2]). The number of initial conditions

must equal the number of discrete states.

Number of continuous states

Number of continuous states in the S-function.

Continuous states IC

Initial conditions of the continuous states in the S-function. You can enter the values as a

comma-separated list or as a vector (e.g., [0 1 2]). The number of initial conditions

must equal the number of continuous states.

Sample mode

Sample mode of the S-function. The sample mode determines the length of the interval

between the times when the S-function updates its output. You can select one of the

following options:

 Inherited

The S-function inherits its sample time from the block connected to its input port.

 Continuous

The block updates its outputs at each simulation step.

http://www.mathworks.com/help/simulink/sfg/mdlinitializesizes.html
http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html

57

 Discrete

The S-function updates its outputs at the rate specified in the Sample time value

field of the S-Function Builder dialog box.

Sample time value

Scalar value indicating the interval between updates of the S-function outputs. This field

is enabled only if you select Discrete as the Sample mode.

Note: The S-Function Builder does not currently support multiple-block sample

times or a nonzero offset time.

Data Properties Pane

The Data Properties pane allows you to add ports and parameters to your S-function.

The column of buttons to the left of the panes allows you to add, delete, or reorder ports

or parameters, depending on the currently selected pane.

 To add a port or a parameter, click the Add button.

 To delete the currently selected port or parameter, click the Delete button.

 To move the currently selected port or parameter up one position in the

corresponding S-Function port or parameter list, click the Up button.

 To move the currently selected port or parameter down one position in the

corresponding S-function port or parameter list, click the Down button.

This pane also contains tabbed panes that enable you to specify the attributes of the ports

and parameters that you create. See the following topics for more information.

 Input Ports Pane

 Output Ports Pane

 Parameters Pane

 Data Type Attributes Pane

Input Ports Pane

The Input Ports pane allows you to inspect and modify the properties of the S-function

input ports. The pane comprises an editable table that lists the properties of the input

ports in the order in which the ports appear on the S-Function Builder block. Each row of

the table corresponds to a port. Each entry in the row displays a property of the port as

follows.

Port name

Name of the port. Edit this field to change the port name.

http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-107350
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-107355
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-107602
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-109576

58

Dimensions

Lists the number of dimensions of the input signal accepted by the port. To display a list

of supported dimensions, click the adjacent button. To change the port dimensionality,

select a new value from the list. Specify 1-D to size the signal dynamically, regardless of

the actual dimensionality of the signal.

Rows

Specifies the size of the first (or only) dimension of the input signal. Specify -1 to size

the signal dynamically.

Columns

Specifies the size of the second dimension of the input signal (only if the input port

accepts 2-D signals).

Note: For input signals with two dimensions, if the rows dimension is

dynamically sized, the columns dimension must also be dynamically sized or set

to 1. If the columns dimension is set to some other value, the S-function will

compile, but any simulation containing this S-function will not run due to an

invalid dimension specification.

Complexity

Specifies whether the input port accepts real or complex-valued signals.

Bus

If the input signal to the S-Function Builder block is a bus, then use the drop-down menu

in the Bus column to select 'on'.

Bus Name

Step 2 of the Build S-Functions Automatically instructs you to create a bus object, if your

input signal is a bus. In the field provided in the Bus Name column, enter the bus name

that you defined while creating the inport bus object.

Output Ports Pane

The Output Ports pane allows you to inspect and modify the properties of the S-function

output ports. The pane consists of a table that lists the properties of the output ports in the

order in which the ports appear on the S-Function block. Each row of the table

corresponds to a port. Each entry in the row displays a property of the port as follows.

Port name

Name of the port. Edit this field to change the port name.

http://www.mathworks.com/help/simulink/sfg/building-s-functions-automatically.html

59

Dimensions

Lists the number of dimensions of signals output by the port. To display a list of

supported dimensions, click the adjacent button. To change the port dimensionality,

select a new value from the list. Specify 1-D to size the signal dynamically, regardless of

the actual dimensionality of the signal.

Rows

Specifies the size of the first (or only) dimension of the output signal. Specify -1 to size

the signal dynamically.

Columns

Specifies the size of the second dimension of the output signal (only if the port outputs 2-

D signals).

Note: For output signals with two dimensions, if one of the dimensions is

dynamically sized the other dimension must also be dynamically sized or set to 1.

If the second dimension is set to some other value, the S-function will compile,

but any simulation containing this S-function will not run due to an invalid

dimension specification. In some cases, the calculations that determine the

dimensions of dynamically sized output ports may be insufficient and both

dimensions of the 2-D output signal may need to be hard coded.

Complexity

Specifies whether the port outputs real or complex-valued signals.

Bus

If the output signal to the S-Function Builder block is a bus, then use the drop-down

menu in the Bus column to select 'on'.

Bus Name

Step 2 of the Build S-Functions Automatically instructs you to create a bus object. In the

field provided in the Bus Name column, enter the name that you defined while creating

the outport bus object.

Parameters Pane

The Parameters pane allows you to inspect and modify the properties of the S-function

parameters. The pane consists of a table that lists the properties of the S-function

parameters. Each row of the table corresponds to a parameter. The order in which the

parameters appear corresponds to the order in which the user must specify them in the S-

function parameters field. Each entry in the row displays a property of the parameter as

follows.

http://www.mathworks.com/help/simulink/sfg/building-s-functions-automatically.html

60

Parameter name

Name of the parameter. Edit this field to change the name.

Data type

Lists the data type of the parameter. Click the adjacent button to display a list of

supported data types. To change the parameter data type, select a new type from the list.

Complexity

Specifies whether the parameter has real or complex values.

Data Type Attributes Pane

This pane allows you to specify the data type attributes of the input and output ports of

the target S-function. The pane contains a table listing the data type attributes of each of

the S-functions ports. You can edit only some of the fields in the table. The other fields

are grayed out. Each row corresponds to a port of the target S-function. Each column

specifies an attribute of the corresponding port.

Port

Name of the port. This field displays the name entered in the Input ports and Output

ports panes. You cannot edit this field.

Data Type

Data type of the port. Click the adjacent button to display a list of supported data types.

To change the data type, select a different data type from the list.

The remaining fields on this pane are enabled only if the Data Type field specifies a

fixed-point data type. See Fixed-Point Data for more information.

Libraries Pane

The Libraries pane allows you to specify the location of external code files referenced

by custom code that you enter in other panes of the S-Function Builder dialog box. It

includes the following fields.

Library/Object/Source files

External library, object code, and source files referenced by custom code that you enter

elsewhere on the S-Function Builder dialog box. List each file on a separate line. If the

file resides in the current folder, you need specify only the file name. If the file resides in

another folder, you must specify the full path of the file.

Alternatively, you can also use this field to specify search paths for libraries, object files,

header files, and source files. To do this, enter the tag LIB_PATH, INC_PATH, or SRC_PATH,

respectively, followed by the path name. You can make as many entries of this kind as

you need but each must reside on a separate line.

http://www.mathworks.com/help/simulink/ug/working-with-data-types.html#f14-90533

61

For example, consider an S-Function Builder project that resides at d:\matlab6p5\work

and needs to link against the following files:

 c:\customfolder\customfunctions.lib
 d:\matlab7\customobjs\userfunctions.obj
 d:\externalsource\freesource.c

The following entries enable the S-Function Builder to find these files:

SRC_PATH d:\externalsource

LIB_PATH $MATLABROOT\customobjs

LIB_PATH c:\customfolder

customfunctions.lib

userfunctions.obj

freesource.c

As this example illustrates, you can use LIB_PATH to specify both object and library file

paths. You can include the library name in the LIB_PATH declaration, however you must

place the object file name on a separate line. The tag $MATLABROOT indicates a path

relative to the MatlabTM installation. You include multiple LIB_PATH entries on separate

lines. The paths are searched in the order specified.

You can also enter preprocessor (-D) directives in this field, for example,

-DDEBUG

Each directive must reside on a separate line.

Note: Do not put quotation marks around the library path, even if the path name

has spaces in it. If you add quotation marks, the compiler will not find the library.

Includes

Header files containing declarations of functions, variables, and macros referenced by

custom code that you enter elsewhere on the S-Function Builder dialog box. Specify each

file on a separate line as #include statements. Use brackets to enclose the names of

standard C header files (e.g., #include <math.h>). Use quotation marks to enclose

names of custom header files (e.g., #include "myutils.h"). If your S-function uses

custom include files that do not reside in the current folder, you must use the INC_PATH

tag in the Library/Object/Source files field to set the include path for the S-Function

Builder to the directories containing the include files (see Library/Object/Source files).

External function declarations

Declarations of external functions not declared in the header files listed in the Includes

field. Put each declaration on a separate line. The S-Function Builder includes the

specified declarations in the S-function source file that it generates. This allows S-

function code that computes the S-function states or outputs to invoke the external

functions.

http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93809

62

Outputs Pane

Use the Outputs pane to enter code that computes the outputs of the S-function at each

simulation time step. This pane contains the following fields.

Code description

Code for the mdlOutputs function that computes the output of the S-function at each

time step (or sample time hit, in the case of a discrete S-function). When generating the

source code for the S-function, the S-Function Builder inserts the code in this field in a

wrapper function of the form

void sfun_Outputs_wrapper(const real_T *u,

 real_T *y,

 const real_T *xD, /*

optional */

 const real_T *xC, /*

optional */

 const real_T *param0, /*

optional */

 int_T p_width0 /* optional

*/

 real_T *param1 /*

optional */

 int_t p_width1 /* optional

*/

 int_T y_width, /* optional

*/

 int_T u_width) /* optional

*/

{

/* Your code inserted here */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call to this

wrapper function in the mdlOutputs callback method that it generates for your S-

function. The Simulink engine invokes the mdlOutputs method at each simulation time

step (or sample time step in the case of a discrete S-function) to compute the S-function

output. The mdlOutputs method in turn invokes the wrapper function containing your

output code. Your output code then actually computes and returns the S-function output.

The mdlOutputs method passes some or all of the following arguments to the outputs

wrapper function.

Argument Description

u0, u1, ... uN Pointers to arrays containing the inputs to the S-function, where N is

the number of input ports specified on the Input ports pane found

on the Data Properties pane. The names of the arguments that

appear in the outputs wrapper function are the same as the names

found on the Input ports pane. The width of each array is the same

as the input width specified for each input on the Input ports pane.

http://www.mathworks.com/help/simulink/sfg/mdloutputs.html

63

Argument Description

If you specified -1 as an input width, the width of the array is

specified by the wrapper function's u_width argument (see below).

y0, y1, ... yN Pointer to arrays containing the outputs of the S-function, where N is

the number of output ports specified on the Output ports pane

found on the Data Properties pane. The names of the arguments

that appear in the outputs wrapper function are the same as the

names found on the Output ports pane. The width of each array is

the same as the output width specified for each output on the

Output ports pane. If you specified -1 as the output width, the

width of the array is specified by the wrapper function's y_width

argument (see below). Use this array to pass the outputs that your

code computes back to the Simulink engine.

xD Pointer to an array containing the discrete states of the S-function.

This argument appears only if you specified discrete states on the

Initialization pane. At the first simulation time step, the discrete

states have the initial values that you specified on the Initialization

pane. At subsequent sample-time steps, the states are obtained from

the values that the S-function computes at the preceding time step

(see Discrete Update Pane for more information).

xC Pointer to an array containing the continuous states of the S-

function. This argument appears only if you specified continuous

states on the Initialization pane. At the first simulation time step,

the continuous states have the initial values that you specified on the

Initialization pane. At subsequent time steps, the states are obtained

by numerically integrating the derivatives of the states at the

preceding time step (see Continuous Derivatives Pane for more

information).

param0, p_width0,

param1, p_width1,

... paramN,
p_widthN

param0, param1, ...paramN are pointers to arrays containing the S-

function parameters, where N is the number of parameters specified

on the Parameters pane found on the Data Properties pane.

p_width0, p_width1, ...p_widthN are the widths of the parameter

arrays. If a parameter is a matrix, the width equals the product of the

dimensions of the arrays. For example, the width of a 3-by-2 matrix

parameter is 6. These arguments appear only if you specify

parameters on the Data Properties pane.

y_width Width of the array containing the S-function outputs. This argument

appears in the generated code only if you specified -1 as the width

of the S-function output. If the output is a matrix, y_width is the

product of the dimensions of the matrix.

u_width Width of the array containing the S-function inputs. This argument

appears in the generated code only if you specified -1 as the width

http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93925
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93884

64

Argument Description

of the S-function input. If the input is a matrix, u_width is the

product of the dimensions of the matrix.

These arguments permit you to compute the output of the block as a function of its inputs

and, optionally, its states and parameters. The code that you enter in this field can invoke

external functions declared in the header files or external declarations on the Libraries

pane. This allows you to use existing code to compute the outputs of the S-function.

Inputs are needed in the output function

Select this check box if the current values of the S-function inputs are used to compute its

outputs. The Simulink engine uses this information to detect algebraic loops created by

directly or indirectly connecting the S-function output to the S-function input.

Continuous Derivatives Pane

If the S-function has continuous states, use the Continuous Derivatives pane to enter

code required to compute the state derivatives. Enter code for the mdlDerivatives

function to compute the derivatives of the continuous states in the Code description field

on this pane. When generating code, the S-Function Builder takes the code in this pane

and inserts it in a wrapper function of the form:

void sfun_Derivatives_wrapper(const real_T *u,

 const real_T *y,

 real_T *dx,

 real_T *xC,

 const real_T

param0, / optional */

 int_T p_width0, /*

optional */

 real_T *param1,/*

optional */

 int_T p_width1, /*

optional */

 int_T y_width, /*

optional */

 int_T u_width) /*

optional */

{

 /* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call to this

wrapper function in the mdlDerivatives callback method that it generates for the S-

function. The Simulink engine calls the mdlDerivatives method at the end of each time

step to obtain the derivatives of the continuous states (see Simulink Engine Interaction

with C S-Functions). The Simulink solver numerically integrates the derivatives to

determine the continuous states at the next time step. At the next time step, the engine

passes the updated states back to the mdlOutputs method (see Outputs Pane).

http://www.mathworks.com/help/simulink/sfg/mdlderivatives.html
http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html
http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93819

65

The mdlDerivatives callback method generated for the S-function passes the following

arguments to the derivatives wrapper function:

 u
 y
 dx
 xC

 param0, p_width0, param1, p_width1, ... paramN, p_widthN
 y_width
 u_width

The dx argument is a pointer to an array whose width is the same as the number of

continuous derivatives specified on the Initialization pane. Your code should use this

array to return the values of the derivatives that it computes. See Outputs Pane for the

meanings and usage of the other arguments. The arguments allow your code to compute

derivatives as a function of the S-function inputs, outputs, and, optionally, parameters.

Your code can invoke external functions declared on the Libraries pane.

Discrete Update Pane

If the S-function has discrete states, use the Discrete Update pane to enter code that

computes at the current time step the values of the discrete states at the next time step.

Enter code for the mdlUpdate function to compute the values of the discrete states in the

Code description field on this pane. When generating code, the S-Function Builder takes

the code in this pane and inserts it in a wrapper function of the form

void sfun_Update_wrapper(const real_T *u,

 const real_T *y,

 real_T *xD,

 const real_T *param0, /*

optional */

 int_T p_width0, /*

optional */

 real_T *param1,/*

optional */

 int_T p_width1, /*

optional */

 int_T y_width, /* optional

*/

 int_T u_width) /* optional

*/

{

 /* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call to this

wrapper function in the mdlUpdate callback method that it generates for the S-function.

The Simulink engine calls the mdlUpdate method at the end of each time step to obtain

the values of the discrete states at the next time step (see Simulink Engine Interaction

http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93819
http://www.mathworks.com/help/simulink/sfg/mdlupdate.html
http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html

66

with C S-Functions). At the next time step, the engine passes the updated states back to

the mdlOutputs method (see Outputs Pane).

The mdlUpdates callback method generated for the S-function passes the following

arguments to the updates wrapper function:

 u
 y
 xD

 param0, p_width0, param1, p_width1, ... paramN, p_widthN
 y_width
 u_width

See Outputs Pane for the meanings and usage of these arguments. Your code should use

the xD (discrete states) variable to return the values of the discrete states that it computes.

The arguments allow your code to compute the discrete states as functions of the S-

function inputs, outputs, and, optionally, parameters. Your code can invoke external

functions declared on the Libraries pane.

Build Info Pane

Use the Build Info pane to specify options for building the S-function MEX file. This

pane contains the following fields.

Compilation diagnostics

Displays information as the S-Function Builder is generating the C source and executable

files.

Show compile steps

Log each build step in the Compilation diagnostics field.

Create a debuggable MEX-File

Include debug information in the generated MEX file.

Generate wrapper TLC

Selecting this option allows you to generate a TLC file. You need to generate a TLC file

if you are running your model in Rapid Accelerator mode or generating Simulink

Coder™ code from your model. Also, while it is not necessary for Accelerator mode

simulations, the TLC file will generate code for the S-function and thus makes your

model run faster in Accelerator mode.

Save code only

Do not build a MEX file from the generated source code.

http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93819
http://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#f8-93819

67

Enable access to SimStruct

Makes the SimStruct (S) accessible to the wrapper functions that S-Function Builder

generates. This enables you to use the SimStruct macros and functions with your code in

the Outputs, Continuous Derivatives, and Discrete Updates panes. For example, with

this option enabled, you can use macros such as ssGetT in code that computes the S-

function outputs:

double t = ssGetT(S);

 if(t < 2) {

 y0[0] = u0[0];

 } else {

 y0[0]= 0.0;

 }

Additional methods

Click this button to include additional TLC methods in the TLC file for your S-function.

Check the methods you want to add and click the Close button to include the methods in

your TLC file. For more information, see Block Target File Methods.

Example: Modeling a Two-Input/Two-Output System

The example sfbuilder_example shows how to use the S-Function Builder to model a

two-input/two-output discrete state-space system with two states. In the example, the

state-space matrices are parameters to the S-function and the S-function input and output

are vectors. You can find a manually written version of the S-function in dsfunc.c.

Note You need to build the S-function before running the example model. To

build the S-function, double-click on the S-Function Builder block in the model

and click Build on the S-Function Builder dialog box that opens.

Initializing S-Function Settings

The Initialization pane specifies the number of discrete states and their initial conditions,

as well as sets the sample time of the S-function. This example contains two discrete

states, each initialized to 1, and a discrete sample mode with a sample time of 1.

http://www.mathworks.com/help/simulink/sfg/ssgett.html
http://www.mathworks.com/help/rtw/tlc/block-target-file-methods.html
http://www.mathworks.com/help/simulink/sfg/rmvd_matlablink__8329be7bc6771da905c3937806e26a3b.html
http://www.mathworks.com/help/simulink/sfg/rmvd_matlablink__960d5e420d0c3b258c29be485c742b01.html

68

Initializing Inputs, Outputs, and Parameters

The Data Properties pane specifies the dimensions of the S-function input and output, as

well as initializes the state-space matrices.

The Input ports pane defines the one S-function input port as a 1-D vector with two

rows.

The Output ports pane similarly defines the one S-function output port as a 1-D vector

with two rows.

69

The Parameters pane defines four parameters, one for each of the four state-space

matrices.

The S-function parameters pane at the top of the S-Function Builder contains the actual

values for the state-space matrices, entered as MatlabTMexpressions. In this example, each

state-space parameter is a two-by-two matrix. Alternatively, you can store the state-space

matrices in variables in the MatlabTM workspace and enter the variable names into the

Value field for each parameter.

70

Defining the Output Method

The Outputs pane calculates the S-function output as a function of the input and state

vectors and the state-space matrices. In the outputs code, reference S-function parameters

using the parameter names defined on the Data Properties — Parameters pane. Index

into 2-D matrices using a scalar index, keeping in mind that S-functions use zero-based

indexing. For example, to access the element C(2,1) in the S-function parameter C, use

C[1]in the S-function code.

The Outputs pane also selects the Inputs are needed in the output function (direct

feedthrough) option since this state-space model has a nonzero D matrix.

Defining the Discrete Update Method

The Discrete Update pane updates the discrete states. As with the outputs code, use the

S-function parameter names and index into 2-D matrices using a scalar index, keeping in

mind that S-functions use zero-based indexing. For example, to access the element

A(2,1) in the S-function parameter A, use A[1]in the S-function code. The variable xD

stores the final values of the discrete states.

71

Building the State-Space Example

Click the Build button on the S-Function Builder to create an executable for this S-

function. You can now run the model and compare the output to the original discrete

state-space S-function contained in sfcndemo_dsfunc.

http://www.mathworks.com/help/simulink/sfg/rmvd_matlablink__01dd181d4e19f1598928c235d3d7dec0.html

	ADPA4CA.tmp
	Signature _________________________________
	Date _____________________________________

