
i

Use Authorization

In presenting this dissertation in partial fulfillment of the requirements for an advanced degree
at Idaho State University, I agree that the Library shall make it freely available for inspection. I further
state that permission to download and/or print my dissertation for scholarly purposes may be granted
by the Dean of the Graduate School, Dean of my academic division, or by the University Librarian. It
is understood that any copying or publication of this dissertation for financial gain shall not be
allowed without my written permission.

Signature _________________________________

Date _____________________________________

ii

Surface EMG and EEG Signal Fusion for

Embedded Control of Prosthetic Hand

Motions

By

Alex N. Jensen

A Dissertation submitted in partial fulfillment of the

Requirement for the degree of

Doctor of Philosophy

In

Engineering and Applied Science

IDAHO STATE UNIVERSITY

May 2014

To the Graduate Faculty:

The members of the committee appointed to examine the dissertation of ALEX JENSEN find it
satisfactory and recommend that it be accepted.

Dr. Steve Chiu, Major Advisor

Dr. Marco Schoen, Advisor

Dr. Gene Stuffle, Advisor

Dr. Alba Perez, Advisor

Dr. Ken Bosworth, Advisor

Dr. Subbaram Naidu, Advisor

Professor James Creelman, Graduate Faculty

Representative

iv

I dedicate this thesis to Joyce and Sid Jensen, my parents, my brothers Gavin, Tyson and

Trent Jensen, and dear friends for their continuous support, help, encouragement, and

motivation for the completion of this research work. I dedicate it also to Amanda J. Clark,

for her support, encouragement, and patients in this research and her valuable input to

this work. Along with Nathan Spark, for his friendship and technical help with exploring

new work on biological signals used in this work. I would have never taken on this

adventure without their help and support.

v

Acknowledgement

I would like to extend special thanks to my major advisor, Dr. Steve Chiu. We have

worked together for many years while working on my bachelors, master and now my

Phd. He has been a great help and inspiration while studying and working. Lastly he has

become a close friend and colleague. Secondly, I would like to thank my advisor, Dr.

Marco Schoen, for his assistance and guidance in completing this dissertation and my

master’s thesis. I am also thankful to my fellow classmates and friends who helped me

on this work. I am grateful for the help of my committee for their advice, and help on

this also Dr. Gene Stuffle, Dr. Alba Perez, Dr. D. Subbaram Naidu, Dr. Ken Bosworth,

and Jim Creelmen.

I would also like to thank my family for their help and support while working on this

research.

vi

Table of Contents

List of Figures ..x

List of Tables ... xiii

Key Words……. .. xiv

Abstract…….. ..xv

Chapter 1: Introduction ..1

1.1 Problem Statement ..1

1.2 Dissertation Theme ...3

1.3 Dissertation Objective and Outline ...4

Chapter 2: Literature Review...7

2.1 Current Prosthetic Hands ..7

2.2 Prosthetic Hand Controls ..8

2.3 Anatomy of the Forearm and Thumb ..10

2.3.1 EMG .. 12

2.3.2 EEG ... 16

2.4 System Identification...19

2.4.1 System Identification Algorithm... 19

2.4.2 State Space .. 22

Chapter 3: Biological Acquisition ...24

3.1 Overview ...24

3.2 sEMG ..24

3.3 EEG ...26

3.3.1 Emotiv EPOC™ .. 26

vii

Chapter 4: Embedded Processor ..29

4.1 Overview ...29

4.2 Arduino..29

4.3 Major Arduino Functions Used and Their Descriptions31

Chapter 5: Expansion on Previous Work...33

Chapter 6: Two Motor Robotic Thumb ...39

6.1 Proposed EEG Headset Design ...39

6.2 Key Command Code ...41

6.3 Motor Code ...42

6.3.1 Arduino Code .. 43

6.4 Equipment ...44

6.4.1 Hardware Setup ... 44

6.4.2 Embedded Processor ... 44

6.4.3 EEG Headset ... 45

6.5 Equipment Setup ...45

6.5.1 Embedded Processor ... 45

6.5.2 EEG Headset ... 48

6.6 Safety ...48

6.7 Software ..49

6.8 Experiment ..49

6.9 System Identification Fuzzy Controller Hybrid ..53

6.9.1 Experiment Setup .. 53

6.9.2 SI of EEG Signals ... 55

viii

6.9.3 Fuzzy Controller Design ... 58

6.9.4 Validations .. 63

Chapter 7: Six DoF Prosthetic Hand Experiment and Setup ...66

7.1 Equipment ...68

7.1.1 New Equipment .. 69

7.2 Equipment Setup ...70

7.3 Test Setup ..73

7.3.1 sEMG Thesis Entropy Method ... 73

7.3.2 EEG Signals .. 77

7.4 Six DoF Hand Tools and Interface Development ...78

7.4.1 Hand Visualization Tool for a Six DoF Hand .. 78

7.4.2 Control of Virtual Hand .. 79

7.4.3 sEMG Entropy Algorithm Implementation .. 81

7.4.4 EEG Signal.. 87

7.4.5 Text File Format ... 87

7.5 Six DoF Hand Experiment ..89

7.5.1 Virtual Hand and Embedded System’s Prosthetic Hand Code 89

7.5.2 Servo Motor and Embedded Platform .. 93

7.5.3 Biological Signal Input ... 94

7.6 Five DoF Robotic Hand Implementation ..95

Chapter 8: Results and Analyses ...98

Chapter 9: Conclusion ...102

ix

Chapter 10: Future Work ...105

References………. ...106

Appendix……….. ..112

Emotiv File Saving Process After an Experiment ...112

Arduino Startup Check List ...114

sEMG Processed Signal Text File Sample ... 118

EEG Processed Signal Text File Sample .. 119

AMUSE MATLAB™ Code ..120

System Identification Steps ...123

MATLAB™ Figure Formatting and Creating Code ...127

List of Publications ..128

x

List of Figures

Figure 2.1: Major Flexor Muscle Groups in the Forearm, [13] .. 10

Figure 2.2: Forearm with Zone 1 and Zone 2, [2] .. 14

Figure 2.3: Motor Units, [22] .. 15

Figure 2.4: Electrode placement: A) Side profile B) Top profile C) EEG electrode

placement map, [25].. 18

Figure 3.1: Emotiv sensor array, [37] ... 27

Figure 3.2: Emotiv cover display, [37] ... 28

Figure 4.1: Arduino Uno Board, [38] ... 30

Figure 6.1: Block Diagram for two Motor Setup .. 40

Figure 6.2: Arduino Processing Button [1]. .. 46

Figure 6.3: Flow Diagram of Two Motor System [1]. .. 47

Figure 6.4: SDK Control Panel, [36]. ... 50

Figure 6.5: Emotiv Key Binding Interface, [36]. .. 51

Figure 6.6: Arduino Servo Motor Setup ... 53

Figure 6.7: Motion Path for Patients ... 55

Figure 6.8: System Identification Toolbox from MATLAB™ .. 56

Figure 6.9: STI Model Output .. 58

Figure 6.10: Fuzzy Controller Membership Function Input ... 59

Figure 6.11: Fuzzy Controller Membership Function Output .. 60

Figure 6.12: Fuzzy Controller Rules ... 61

Figure 6.13: Fuzzy Controller Surface Rules Visualization ... 61

xi

Figure 6.14: System Identification Fuzzy Controller Simulink Model 62

Figure 6.15: Fuzzy STI Model Output .. 63

Figure 6.16: Validation Plot .. 64

Figure 7.1: Multi-Motor Setup. ... 67

Figure 7.2: Electrodes and Connectors ... 71

Figure 7.3: Electrode Array Placement ... 72

Figure 7.4: Virtual Hand Open ... 79

Figure 7.5: Virtual Hand Closed ... 79

Figure 7.6: sEMG Signal for Multiple Hand Motion ... 82

Figure 7.7: Fuzzy Controller Membership Functions Plot ... 83

Figure 7.8: Fuzzy Controller Output Values... 84

Figure 7.9: sEMG Fuzzy Controller Flow Diagram ... 85

Figure 7.10: sEMG Actual Hand Motion ... 86

Figure 7.11: sEMG Predicted Hand Motion with Entropy ... 86

Figure 7.12: Processing Code Flow Diagram .. 91

Figure 7.13: Arduino Code Flow Diagram .. 92

Figure 7.14: Six Servo Motor Setup with Embedded System .. 94

Figure 7.15: Five DoF Prosthetic Hand .. 96

Figure 0.1: Emotiv TestBench, [45] ... 113

Figure 0.2: Convert EDF to CSV, [45] ... 114

Figure 0.3: Arduino Board Selection .. 115

Figure 0.4: Unknown Device Detected ... 116

Figure 0.5: COM Issues .. 116

xii

Figure 0.6: Done Uploading ... 117

Figure 0.7: Arduino Front Conceal ... 117

Figure 0.8: System Identification Toolbox ... 125

Figure 0.9: Linear Parametric Model Menu ... 125

Figure 0.10: System Identification Output.. 126

xiii

List of Tables

Table 2.1: EEG Waves and Frequencies, [23] ... 16

Table 7.1: Entropy for Single Motion End Results [2] ... 75

Table 7.2: Summary of Signal Classification by the Intelligent Classifier, [2] 77

xiv

Key Words

A Amp or Ampere

CSV Comma Separated Value

EDF European Data Format

EEG Electroencephalography

EEPROM Electrically Erasable Programmable Read-Only Memory

EMG Electromyogram

sEMG surface Electromyogram

Hz Cycle per Second

I/O Input/Output

KB Kilo Bytes

M Mega or 10
6

m milli or 10
-3

PWM Pulse Width Modulated

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

xv

Abstract

This dissertation focuses on developing an embedded platform for controlling the

actuation of a robotic hand and creating a virtual interface environment for it. The work

done in this dissertation was built on my master’s thesis and multiple publications during

my masters and doctorate work.

The first stage of this research focused on creating an embedded system platform that

could use Electroencephalography (EEG) to control a two degree-of-freedom (DoF)

thumb. This work was successfully done using inexpensive components and an EEG

headset for the EEG actuation. The patients could be trained and then control the robotic

finger in real-time. This part of the work was so successful that it was published in an

IEEE paper, [1].

Another part of this work was to further develop the embedded platform keyboard

interface made in, [1]. This interface for that paper was able to control two finger

motions. This dissertation expanded that so that it could control a 6 DoF hand. The input

was from keyboard keys like in, [1] and added to that was a virtual hand. The virtual

hand mimicked what the real hand would do when a command was sent since the

embedded system received a similar signal to the virtual hand.

With the knowledge and background in sEMG and EEG signals from previous work, this

dissertation developed a platform that can test these algorithms for controlling a

prosthetic hand. To do this the controller developed in my thesis along with conference

xvi

work on sEMG in [2] and [3] were used and then expanded upon. The expanded work

was done because the original controller identified single hand motions at a time and

wasn’t designed to handle multiple hand motions being sent to it in one continues file.

The EEG control method and signals from [1] were used for the EEG portion.

This dissertation designed a platform that can receive multiple biological signals and can

control a prosthetic hand with those signals. This system can be controlled by a plethora

of algorithms that use a defined output protocol. This unique hybrid approach shows that

the platform is very versatile and can take multiple types of inputs. The design of the

embedded platform will allow for expansion to enable it to easily be used in future

research since it will be programmed using C code. These properties will allow it to be

an ideal test bed for testing and fine tuning control algorithms.

1

Chapter 1: Introduction

1.1 Problem Statement

Currently there are more than 2 million Americans who have missing limbs, and this

number increases by 185,000 people per year [4]. According to USA Today, due to the

Afghanistan war, in one month 134 service members lost a limb from mines or war-

related injuries, [5]. Current research is focused on creating more intuitive prosthetics to

address the rising need for them. From past research, a robotic prosthetic hand should be

autonomous, have a high level of functionality, comfort and be easy to use [6]. As part of

being easy to use, there should be a natural way of communicating with the robotic limb

[7].

Today’s robotics have advanced greatly in the last decades but these advancements have

not carried over to prosthetic arms and hands. These upper prosthetic limbs have not

advanced much and are still using the simplistic hook and claw. The principles and

technology developed by the first commercial prosthetic hands at the Central Prosthetic

Research Institute of the U.S.S.R in 1964, have not been improved on much since [8].

One of the reasons for this is because of cost. Many of the advanced robotic technologies

are still very new and costly. A platform needs to be made that can allow for

development of controls and prosthetic hands more cost effectively.

One of the major problems that keeps new prosthetics from being fully used is effective

control of the hand. The purpose of this dissertation is to find a cost-effective, non-

2

invasive method to control a prosthetic hand. Part of the way the cost will be kept low is

that a virtual hand will be created that can be used to test algorithms without having the

actual hand connect. This will make the platform more versatile since multiple groups

can be working in parallel with one prosthetic hand.

Classical control methods for prosthetics have many drawbacks when it comes to

controlling smart prosthetics, especially prosthetics with two or more degrees of freedom.

Classical control techniques, such as electromyogram (EMG) sensors, have been used

ever since the development of the first prosthetics and have been reliable when

generating motor movement with electro-potentials from EMG. However, with the

introduction of multiple degrees of freedom for artificial hands, classical control

techniques are insufficient to account for the added complexity.

A problem with EMG methods is successfully implementing them to control a thumb.

Current work with EMG has only been able to model the hand grasping and not

performing fine control for each finger or thumb, [2]. This problem will be addressed in

this work by investigating the issue of whether or not EEG signals can be systematically

used to control the movement trajectory of an artificial thumb.

This research will need to investigate using both sEMG and EEG signals to control a

robotic hand. Along with developing control algorithms that can identify the intent of the

two signals, a platform will need to be created to receive the signals and then control the

robotic hand. This platform needs to be able to work with different programs commonly

used to develop algorithms. The platform needs to be versatile and be programmed using

a common language. This will allow for future development on this system to be done.

3

1.2 Dissertation Theme

Research is being done to design prosthetic hands that can be controlled by sEMG or

EEG signals. sEMG signals occur when a motor unit receives a command from the brain

and the motor units that activate the contraction of muscles in the arm. These signals can

be measured on the skin as an electric potential by electrodes. sEMG signals are random

in nature, and it is difficult to characterize the intent of the signal. EEG signals are

electro potentials generated by many neurons that are in the brain. These signals can be

measured by surface electrodes or implanted sensors.

This dissertation will further develop an effective process of characterizing sEMG signals

and use that to control advanced prosthetic hands. Also, this work will include

developing an effective method for acquiring EEG signals that can be used in the control

of a robotic thumb to give the hand greater dexterity. In this dissertation, Shannon

entropy is used to characterize different hand gestures as sEMG signals. The sEMG

signals are processed with an entropy algorithm. Different commonly performed tasks

were used such as grasping a water bottle or grasping a key. These tasks were

characterized based on entropy values. Each patient was trained for the EEG signals.

This training process is important because each person’s EEG is unique. After the

training process the patient was to move the thumb in a pre-defined set of motions for a

given length of time.

The intent of this dissertation is to develop a platform that can take the above biological

signals and use them to control a prosthetic hand. A problem in developing control

4

algorithms is that they are often developed using unique, specialized software packages,

making it difficult to interface with a prosthetic hand. This dissertation will develop a

platform that can utilize many different control algorithms from different software

packages.

To help with the algorithm development, a visualization method was created that allows

the users to know when the different motors are being sent commands and in which

direction. This visualization tool will also be able to control the hand with different input

signals from various controllers.

1.3 Dissertation Objective and Outline

The objective of this dissertation is to create a platform that can control a prosthetic hand

with different biological signals. These signals will be processed by different controllers

that will be able to identify the motions that will be performed by the prosthetic hand.

This platform will also have a visualization aspect that will allow for algorithm

development without the need of the actual prosthetic hand.

The organization of this thesis is as follows: Chapter Chapter 2: , Literature Review,

gives an overview of what sEMG and EEG signals are and how they are acquired. It also

covers some of the anatomy of the hand and brain to help better understand why

electrodes were placed in the locations they were.

5

Chapter Chapter 3: , Biological Acquisition, discusses how sEMG and EEG signals are

acquired, on which parts of the body, and the equipment used to do so.

Chapter Chapter 4: , Embedded Processor, discusses the embedded processor that will be

used in the experiments conducted in this dissertation.

Chapter Chapter 5: , Expansion on Previous Work, goes in-depth over improvements to

the algorithm that was originally created in my thesis and how it has been improved.

Chapter Chapter 6: , Two Motor Robotic Thumb, contains the experiment which was the

first stage of the prosthetic hand platform. This part of the dissertation goes into how a 2

DoF thumb is controlled with EEG signals.

Chapter Chapter 7: , Six DoF Prosthetic Hand Experiment and Setup, is the final

experiment that takes work done in the previous chapter as well as work from my thesis

and fuses them into one system that controls a prosthetic hand. It also shows the virtual

hand that is able to mimic the movement of the actual hand whether or not it is attached

to the system at the time.

Chapter Chapter 8: , Results and Analyses, covers the finding from the different

experiments performed in this work. It also looks at how well the end prosthetic platform

fulfills the goal of this dissertation.

Chapter Chapter 9: , Conclusion, ends the dissertation by discussing the need for a better

prosthetic hand platform and summarizing the steps that were used to create the platform.

6

Chapter Chapter 10: , Future Work, discusses some other questions that could be

addressed and improvements that could be made on the system.

7

Chapter 2: Literature Review

Of people who have lost a limb, most turn to prosthetics to regain some mobility and

ability to function independently. Today’s robotics have developed greatly over the last

decade. CBS reported in December 2012, [9], about the recent advancement in human-

computer interface robotics. A quadriplegic woman, with an array of electrodes

implanted in her brain, has the ability to move a robotic arm, [9].

However within the world of upper limb prosthetics, there is a great potential for

improvement. Many current models are based on the same technology and principles as

the first commercial prosthetic hand developed at the Central Prosthetic Research

Institute of the U.S.S.R. in 1964, [8]. The limitations of the older, purely mechanical

designs prevent patients from interacting with them as reported in [9].

2.1 Current Prosthetic Hands

With advancements in modern artificial hands more people are interested in new

prosthetic hands. This comes at a cost though and usually requires surgery. With the

risks of extensive surgery as was done in [9], many patients prefer other options such as

skin surface sensor prosthetics. This includes non-implanted electroencephalography

(EEG) sensors and electromyogram (EMG) prosthetics which are simpler for patients to

8

control. Due to the simplicity, low maintenance and robustness of older models, most

patients still currently prefer the older mechanical prosthetic arms.

A part of the newer robotic hands that separate them from the older mechanical hands is

the opposable thumb. The thumb allows for more mobility but can be difficult to control.

EMG controls are simplistic and cannot handle multiple degrees of freedom well. The

design proposed in this paper is to interface EEG signals with an artificial thumb of a

prosthetic hand. Examples of the latest robotic hands that would benefit from a more

advanced EEG controller include the Shadow Dexterous Hand™, [10], which has 20

actuated degrees of freedom along with position, force, and sensitive touch sensors.

Another example is the Sandia Robotic Hand, [11]. The Sandia hand is considered one

of the most cost-effective hands built today. The hand has 12 degrees of freedom and can

be manipulated similar to a human hand. The latest breakthroughs in robotics create vast

research potential in effectively controlling these types of electromechanical hands.

Thus, this research explores interfacing between EEG signals, a computer, and an

embedded processor with servo motors for thumb control.

2.2 Prosthetic Hand Controls

One of the modern methods for prosthetics that has been explored is implanting

electrodes within the skull, [12], and nerve endings. This method has many

disadvantages such as electrode rejection from the body, which can be life threatening.

9

This approach is still in the experimental phase. Therefore, traditional methods are still

being explored due to risk factors of some modern methods. These traditional methods

include EEG and surface EMG signal processing. Traditional methods still face the

trouble of signal identification of the different hand motions to the original signal.

10

2.3 Anatomy of the Forearm and Thumb

Figure 2.1: Major Flexor Muscle Groups in the Forearm, [13]

It is important to know that actions that require fine motor have small motor units

compared to gross or rough motor actions. For example, surgeons need fine motor skills

to make precise incisions with their hands whereas running does not require precise

11

movements. As a result, the motor units for people’s hands are much smaller than motor

units in people’s legs, [2] [13].

The reconstruction of hand kinematics during reach to grasp movements from EEG

signals is done through linear modeling and genetic algorithms, [14]. The genetic

algorithm selects the EEG channels to be used as inputs to the linear decoder. The results

showed that the method developed is a potential design for EEG-based decoders.

Another study utilizes the Auto Regressive (AR) model to convert the time domain

signals to the frequency domain, [15]. Through the computation of the Fisher distance,

the characteristics are extracted and analyzed. The conclusion of source [15] showed that

certain cognitive actions from EEG signals occur within the frequency bands of 14 Hz

and 30 Hz. Yet the results were not conclusive about identification through AR

modeling.

Other current research in EMG focuses on algorithms to extract the intent of the EMG

signals. These EMG methods isolate EMG signals on the forearm at motor units, [16]

[17]. Others use an array of electrodes to collect the information from many different

motor units, [2] [18]. Some shortcomings of these methods are that EMG signals are

taken from the motor units which are created from muscles in the forearm. These

methods rely on most of the forearm being intact, which isn’t the case in many

amputations. To add further complications, most of the muscles that control the thumb

are located in the hand and small muscles in the distal part of the forearm, away from the

elbow, [13]. Since these muscles are in the distal part of the forearm they are very likely

12

to be damaged or lost in amputation. This makes it impossible to get these local EMG

signals. As a result, alternative means are needed to control an artificial thumb.

The structure of the thumb consists of many muscles that act similarly to a guy-wire

structure. The muscle creates tension from all sides of the thumb giving the thumb its

unique function. There are ten muscles that give the thumb its motion. Three of these

muscles are located in the distal forearm, four intrinsic muscles within the hand, three

thenar muscles and the adductor pollicis, [19]. The thumb has four-degree of motion.

Those motions include up, down, left, and right. With these four ranges of motion, the

function of the thumb is constructed, [20].

Biological signal idenification through methods used today still face signal identification

issues. Those issues include being able to apply the identification model to a Brain

Computer Interface (BCI) and have the model be adaptable to both EEG and EMG.

EMG signal models have been created to control prosthetics. They are limited and

cannot control the thumb effectively. EEG provides a myriad of control possibilities.

Currently there is no cost-effective EEG system that can be used for controlling robotic

thumbs.

2.3.1 EMG

EMG signals are electrical impulses that contribute contraction in muscles. EMG signals

are present because of neuromuscular activity in the body. The electrical impulses can

13

be measured by sensors. There are different types of sensors that can be used to measure

EMG signals. There are two main groups of EMG sensors; implanted sensors that are

expensive but provide cleaner, less noisy output signals. The other type of sensors are

surface sensors that are inexpensive but have more noise due to the higher impedances

from the skin of the patient, [2].

Surface EMG (sEMG) signals are random in nature, amplitude modulated, and time

dependent, [21]. This makes it difficult to classify EMG signals. Currently there is no

prosthetic hand at an affordable cost that uses EMG, [16].

In this dissertation the forearm can be broken into two zones. Figure 2.2 shows zone 1 is

in the area closest to the wrist. Zone 1 has the largest concentration of tendons in the

entire arm. These tendons connect the fingers and the muscles in the adjacent zone.

Zone 2 in Figure 2.2 is the proximal part of the forearm; the zone closest to the elbow.

Zone 2 is where the major muscle bellies are located and is where the main motor units

that drive the function of the hand are located.

14

Figure 2.2: Forearm with Zone 1 and Zone 2, [2]

Motor units, like the ones in zone 2, are comprised of motor neurons and all the

connected muscle fibers. Motor units use motor neurons to carry impulses from the

spinal cord, or central nervous system, to the muscle fibers as shown in Figure 2.3. These

action potentials, or impulses, are electrical signals that travel from the spinal cord along

the motor neurons to the muscles. When the electrical signals from the motor neurons

reach the muscles it innervates the muscle causing a contraction of the muscle, [22].

15

Figure 2.3: Motor Units, [22]

Figure 2.1 (a), (b) and (c) are different views that show the different layers of the flexor

muscles of the forearm. The flexor muscle groups contain the majority of the motor units

that initiate the muscle contraction. Each layer shown are the muscles used to control the

hand. These muscles in Figure 2.1 contain motor units which produce a small voltage

that can be measured as EMG signals with electrodes. Zone 1 does not provide

significant EMG signals because the movement of tendons does not produce significant

sEMG signals, [22].

16

2.3.2 EEG

EEG signals are electro potentials generated by the array of neurons within the brain and

can be measured as well. EEG waves have distinct patterns divided into specific

frequency ranges. These frequency ranges can be seen in Table 2.1 which contains the

four commonly seen frequency ranges when recording EEG signals. These ranges can be

recorded and manipulated through signal processing algorithms.

Table 2.1: EEG Waves and Frequencies, [23]

Signal Classification Frequency (Hz)

Delta 0.5 – 4

Theta 4 – 8

Alpha 8 – 13

Beta 13 – 30

A main handbook on EEG is [24]. This handbook points out the four main items to

consider when working with brain recording.

1. Electrodes: They are usually made of silver or gold because they are good

conductors. Gold is ideal because it doesn’t tarnish but it is more

expensive.

2. Amplification: The amplifier needs to be able to operate in the microvolt

 range.

17

3. Filters: Must be able to filter on as time rhythm which allows it to remove

artifact noise such a blinking or 60 Hz noise from surrounding

electronics.

4. Recording Unit: The experiments need to be able to be recorded to allow for

 data processing.

As with sEMG, EEG electrode placement is important. The system that many

laboratories throughout the world use is the 10-20 International System, which stands for

the placement of electrodes evenly spaced from each other by 10 or 20 percent of

measurements made based on the patient’s skull, [18]. A pictorial representation is

shown in Figure 2.4, [20].

18

Figure 2.4: Electrode placement: A) Side profile B) Top profile C) EEG electrode placement map, [25]

Another important point is a “ground” or reference electrode. The “ground” electrode is

often placed in the middle of the forehead. It is also important to prepare the patient

before electrodes are placed to reduce noise of the acquired signals. This is done by

19

cleaning the location of the sensors with acetone. Electrode paste is often used to hold

the electrodes in place and increase conductivity between the scalp and electrodes, [24]

[20].

2.4 System Identification

System Identification (SI) is a method that is used to characterize a given physical

system, such as a car manufacturing process to biological organisms. SI is useful when

little information is known about the entire system. This can range from knowing the

input and output to the system to only knowing the output, which is measured or

observed. It can be used to model the system and can often be accurately simulated.

There are two main types of system identification models: the black-box and gray-box.

The black-box model is the most common model and is used when there is no prior

information known about the system. It can include some of the following models:

Autoregressive (AR), Autoregressive-Moving Average (ARMA), Moving Average

(MA), and polynomials, [26]. The disadvantage is that little physical information can be

extracted from the black-box model. The gray-box model uses a black-box structure, but

allows for limited physical information to be extracted.

2.4.1 System Identification Algorithm

Assume that there is a linear time-invariant system, then:

20

 ̇

(1)

where ̇ is a time derivative, A, B, C, and D are matrices, is the state vector, is the

input and Yt is the output. The general state solution of Equation (1) is given by

 () () ∫ () ()

 (2)

The discrete-time model of Equation (1) at a sampling rate of is given by

 () ̃ () ̃ ()

 () () ()

(3)

where ̃ , ̃ ∫ ()

, and k is the discrete time index. The output of

Equation (3) is given as

 () ∑ ()

 ()

(4)

where () are the Markov parameters, shown below as the input and output parameters.

The Markov parameters in Equation (4) are given in terms of the state space model

matrices as:

21

 () () ̃ ̃ or [̃ ̃ ̃ ̃ ̃ ̃ ̃] (5)

with k > 0. In this work for SI a Hankel matrix will be used because it simplifies later

calculation since a fraction of the matrix is need from its singular value decomposition. It

will be assumed that () is a pulse response. Using a discrete time shift of

the Hankel matrix defined as

 () [

 () ()

 () ()

 ()

 ()

 () () ()

]

(6)

where . The length of the matrix is defined as l and the width is defined as

w. Using the impulse response, Markov parameters can be used to construct

 and this can be done without knowledge of the system matrices .

Let m be the order of the system being identified; choose to ensure

that the matrix () is of rank m. If () is assumed to be the singular

value decomposition of the Hankel matrix, then the matrices of the minimal state-space

realization are as follows:

 ()

 ,

 [

],

 , ,

(7)

where i is the number of inputs and q is the number of outputs, [27,28,29,30,31].

22

2.4.2 State Space

Given a physical system with an n
th

-order ordinary differential equations (ODE) and that

has consistent coefficients in continuous-time (), it can be expressed as,

(8)

where is the input or excitation function. A common method for solving ODEs is to

rewrite the system into an equivalent set of n first-order differential equations with vector

components that correspond to the differentials defined as,

, for

 then can be written as [

]

.

Taking the derivative of for each component, we obtain

 ̇

 , (9)

 ̇

 . (10)

The equations then can be written into a vector-matrix form to obtain the following

matrices,

23

[

] [

] [

] [

]

(11)

And can be expressed in the compact form

 ̇ (12)

where . A is the state matrix, and B is

the input matrix.

The output vector, or the measurement vector, can be defined in a similar compact form

as:

 (13)

where is the output vector. The corresponding vectors,

 , [32,33], are the input matrix and the direct transition matrix, respectively. Thus,

Equation (12) and (13) are as shown in Equation (1), [27,28,29,30,31].

24

Chapter 3: Biological Acquisition

3.1 Overview

An objective of this work is to find an inexpensive method of controlling a prosthetic

hand. One method this work will explore is an inexpensive electroencephalography

(EEG) system to control a robotic thumb. The method used is to train a person to execute

different movements with his mind by thinking of an action. After a number of trainings,

which vary depending on the person, the patient will become proficient at the actions. At

this stage software will be used to send signals to an embedded processor letting it know

that the patient has performed a certain action. The embedded processor will interpret the

message and then activate a motor based on what action signals were sent. The objective

of this research is to control a prosthetic thumb. This control can be done with different

types of signals, and this dissertation will be considering EEG or EMG signals.

3.2 sEMG

sEMG signals have the largest amplitude over motors points. But it is important to note

that motor units are not isolated in one specific area. The units are spread throughout the

muscle so they are not localized. Motor points are where the nerve bundle enters the

muscle bellies. Motor points can be activated by using external stimulation, but these

usually only causes weak contractions. Past experiments [16] and [34] used a muscle

25

stimulator, the Rich-Mar HV 1000, to find motor points and then the sEMG signals were

measured over these areas. Finding the best spot for muscle contraction is difficult to

find and differs by person. Muscle stimulation can generally be used to find motor points

that cause fingers contraction; unfortunately it is often painful and time consuming.

Motor point location varies for many reasons, such as the subject’s muscle mass, sex and

other anatomical factors.

The shortcoming of this method is: How would one find the motor points on an

amputated limb? The only real way to tell if you activate a motor point is by watching

the muscle twitch because they no longer have a hand. Also, depending on the severity

of the amputation most of zone 1 and 2 could be lost or damaged if the amputation

occurred because of an accident instead of being performed by a surgeon.

To overcome the problem of finding motor points, this dissertation uses electrodes placed

perpendicular to the muscles originating from the medial epicondyles of the forearm as

shown in Figure 2.1 (a). In past experiments it was verified that zone 1 didn’t contain

very meaningful sEMG information [2]. Zone 2 was over the general muscle bellies of

the forearm. Therefore, the anterior compartment of the forearm was used since it

contains the flexor muscle groups, which is where many motor points are located. Three

electrode pairs were placed over the muscles in zone 2. The sEMG signals were

measured with these electrode pairs during the experiments. Surface electrodes are non-

invasive because they do not have to be implanted in the patient to measure the sEMG

signals, [22].

26

The sEMG data acquisition device that was used to collect data from the three electrode

pairs was the NORAXON MyoSystem 2000. The data was acquired at a 1,000 Hz

frequency (or 1,000 samples a second). The NORAXON measures the potential

difference between the two sensors as positive for red and negative for black with

reference to ground. The ground, or reference, was placed on the patients elbow. The

elbow was used since there are hardly any motor units in that region because of the elbow

bones, which provides an excellent reference for the circuit, [2].

3.3 EEG

3.3.1 Emotiv EPOC™

The Emotiv EPOC™ is an inexpensive EEG device. The headgear with the research

software can be purchased for about $700. The headgear has 14 electrodes with

ground/reference nodes. The sensors are in an array on AF3, F7, F3, FC5, T7, P7, 01, 02,

P8, T8, FC6, F4, F8, AF4, and 2 ground nodes can be seen in Figure 3.1, [35]. This

electrode placement is not as complicated as the 10-20 International System shown in

Figure 2.4. This is one of the ways that cost is reduced from many of the larger, more

expensive, machines that have to handle many more electrodes. Raw EEG signals can be

acquired with the research edition of the software. The raw data can be taken and saved

into a Microsoft Excel file which can be imported by other software to do data analysis,

such as MATLAB™, [36] [37].

27

Figure 3.1: Emotiv sensor array, [37]

The 16 points in Figure 3.1 are where the 14 electrode placements are on the headset.

The headset can be seen in Figure 3.2 with the electrodes. The electrodes have saline

solution applied to them to improve conductivity. The device transmits wirelessly to a

computer via a wireless transmitter/receiver (dongle). The EEG signals are displayed

graphically on the monitor with help of the software called TestBench™. The Emotiv

has a sampling rate of 128 samples per second, [35].

28

Figure 3.2: Emotiv cover display, [37]

The system allows for many different actions which associate to a thought to be trained.

The person trains an action by assonating a thought with. The more actions that are

trained, the more difficult it becomes to execute the desired motion. Two actions are

easy to control but the difficulty increases greatly beyond three motions. The headset

will get confused at the action being sent and may do the wrong action. To help with this

additional training needs to be done.

Once the patient has been trained, an experiment will be performed and the data can then

be saved. For instruction on how to save experiment data, see Appendix of this

dissertation: Emotiv File Saving Process After an Experiment.

29

Chapter 4: Embedded Processor

4.1 Overview

The “brains” of the prosthetic hand is the embedded system. It is used to control the

motors based on the biological signals, or key commands, from the computer. The

embedded system will control the motor position and the speed of the motors. The hand

is driven by servo motors. Servo motors are used since they have a high level of position

accuracy. This accuracy will allow the embedded platform, the Arduino Uno or Arduino

Duemilanove processor, to control the hand.

4.2 Arduino

Arduino is an embedded processor that is reprogrammable. The startup package is

inexpensive for prototyping purposes, and the chip's programming language is

straightforward. The Arduino can be programmed using a standard USB cable and a

computer. When reprogramming is required, the Arduino does not have to be

disconnected from the circuit. It simply needs to have the USB cable connected to a

computer. For this work the USB cable will not be disconnected so programming can

take place whenever it is needed. This adds flexibility. The USB cable also allows for

serial communication. The serial communication allows the user to type numbers and

letters and sends them to the Arduino. The Arduino has a 16 MHz clock speed.

30

Figure 4.1: Arduino Uno Board, [38]

The Arduino main micro-controller is an ATmega 328 that can run off a voltage ranging

from 7 – 12 V. It has 14 digital input/output (I/O) pins. This version of Arduino has 6

digital pins that allow pulse width modulation (PWM). All digital pins can supply 40

mA. It has 6 analog input pins and can supply 50 mA. It has 32 KB of flash memory and

0.5 KB are used by the processor’s bootloader. It has 2 KB of SRAM. It also has 1 KB

of EEPROM memory. It has a 5 V supply pin that is an output from a 5 V voltage

regulator on the board. It has a 3.3V pin or the 3V3 which is an output from a 3.3 V

voltage regulator which can supply a maximum of 50 mA. The total current that the

Arduino can output on all the pins at one time is 200 mA. The physical dimensions of

the Arduino are 2.7 inches long and 2.1 inches wide. It has four screw holes for

mounting purposes.

31

One function of the Arduino is Analog Write, which accepts a value from 0 to 255. This

function is used for PWM signals. Analog Read will receive an input voltage of 0 to 5 V

and converts the voltage to a decimal value of 0 to 1023. These pins are often used for

sensors to give feed back to the system. Since servo motors are used, the servo motors

will not require feedback, [38].

4.3 Major Arduino Functions Used and Their Descriptions

analogRead(pin). This function works for the analog pins on the board. The pins that

this function works for are ANALOG IN pin 0 to pin 5. It reads an analog value that is

applied to the pin. The pin is determined by which value is put into the function. This

function takes a voltage from 0 to 5 V and converts the voltage to a decimal value of 0 to

1023.

analogWrite(pin, value). This function is used to right to an analog signal to an output

pin. The analog signal is specifically a PWM signal. The function is passed a pin value,

which is the pin that will be used to output the signal on. The value passed to it

determines the duty cycle of the PWM signal. The value is 0 to 255 which corresponds

to 0 to 100% duty cycle. The pins that are capable of creating a PWM are 3, 5, 6, 9, 10,

and 11, [38].

The Arduino main processor is an ATMEGA 328 AVR microprocessor. It has a USB

circuit that allows it to communicate with the terminal without using a UART, which is

32

typically needed for a microprocessor if the user wants to be able to receive different

information from the embedded platform. It also has various circuit protections,

generally by means of diodes.

33

Chapter 5: Expansion on Previous Work

The author’s previous work is provided in [2] and discusses using EMG signals to control

the prosthetic hand and involved performing experiments using EMG sensors. The data

is collected and stored in large text files with many columns that are not required for the

end results. The important information is taken from the text files and imported to

MATLAB™. Then MATLAB™ is used to calculate the entropy of the signals whose

results can be used to decide what hand motion is being performed.

While doing the work on EEG experiments, I noticed that I was able to optimize the work

I did in my thesis. There are a couple of ways that data can be imported. Commonly it is

saved in a Excel file but can also be saved as a text file. The needed steps to import the

data into MATLAB™ to allow the data to be processed with different algorithms are as

follows:

1. Format all the files so the data are uniform

2. Import the file into MATLAB™

3. Assign the file to a variable to allow it to be used in the code

4. Repeat until all the files are imported into MATLAB™

This process was done manually before I began my thesis. This was a time consuming,

tedious and often allowed for error. Each file was opened and rows and columns were

34

deleted such as the titles and other parts of the file that MATLAB™ could not handle

properly. In my thesis I took advantage of functions within MATLAB™ to import the

data. It required many loops and entering in all the names of the files but it was only

needed to be done once and then it could be run repeatedly. If new experiments were

performed, the data could easily and efficiently be imported. The code was long though

and required time to initially set up. Sample code was as follows, [2] [3].

for i = 0:163 1
 2
 if i == 0 3
 load a082A1.ASC; % Load the raw sEMG and force data. 4
 5
 z2_1r = a082A1(:,7); % Column 7 is Z2-1 Rectified. 6
 z2_2r = a082A1(:,8); % Column 8 is Z2-2 Rectified. 7
 z2_3r = a082A1(:,9); % Column 9 is Z2-3 Rectified. 8
 z2_1 = a082A1(:,11); % Column 11 is Z2-1 Unfiltered. 9
 z2_2 = a082A1(:,12); % Column 12 is Z2-2 Unfiltered. 10
 z2_3 = a082A1(:,13); % Column 13 is Z2-3 Unfiltered. 11
 12
 elseif i == 1 13
 14
 load a082A2.ASC; % Load the raw sEMG and force data. 15
 16
 z2_1r = a082A2(:,7); % Column 7 is Z2-1 Rectified. 17
 z2_2r = a082A2(:,8); % Column 8 is Z2-2 Rectified. 18
 z2_3r = a082A2(:,9); % Column 9 is Z2-3 Rectified. 19
 z2_1 = a082A2(:,11); % Column 11 is Z2-1 Unfiltered. 20
 z2_2 = a082A2(:,12); % Column 12 is Z2-2 Unfiltered. 21
 z2_3 = a082A2(:,13); % Column 13 is Z2-3 Unfiltered. 22

 .

 .

 .

 elseif i == 163 1826
 1827
 load a082D41.ASC; % Load the raw sEMG and force data. 1828
 1829
 z2_1r = a082D41(:,7); % Column 7 is Z2-1 Rectified. 1830

35

 z2_2r = a082D41(:,8); % Column 8 is Z2-2 Rectified. 1831
 z2_3r = a082D41(:,9); % Column 9 is Z2-3 Rectified. 1832
 z2_1 = a082D41(:,11); % Column 11 is Z2-1 Unfiltered. 1833
 z2_2 = a082D41(:,12); % Column 12 is Z2-2 Unfiltered. 1834
 z2_3 = a082D41(:,13); % Column 13 is Z2-3 Unfiltered. 1835
 1836
 end 1837
 1838
end 1839

The code shown above had some limitations. This was time consuming to program the

1800 plus lines and changes the file name for each elseif statement but it was much faster

than doing it manually. Another shortcoming was the results had to be stored in a matrix

and then the next data was loaded in. If previous data need to be looked at again, then

that data had to reloaded. It would be better if each set of data had its own unique name.

Another shortcoming was the data was in text files which made it necessary to create a

variable for each column.

In the work done in this dissertation further optimization was done to allow for more

compact code to be created to accomplish the same task. Pre-formatting the data was

eliminated which reduced the overall project time dramatically. This reduced time

because with the Excel import function specific rows and columns could be selected. For

example the title rows and columns could be omitted. This was not commonly done prior

to this work.

The function xlsread was used to read in the Excel file of the given rows and columns

and store it to a variable. The file naming convention that this algorithm is based on is

UserNameorPatient Direction NumberofExperiment for example: UserA left1. Further

36

reduction was done with the sprintf function. The sprintf() function allows for a

statement to be printed with parts that will change, for example, depending on an index

from the different for loops. %s are used for strings, %d are used for decimal numbers.

The sprintf function needs actual letters so a char command changes the 'word' to word.

The first %s is the patient’s name with the index p, being the second %s. Conditions

were made based on the progression in the for loop to allow for unique variables to be

made for each file. The first iteration of the program was created as:

for a = 1:3 1
 for i = 1:3 2
 if a == 1 && i == 1 3
 in1 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 4
 elseif a == 1 && i == 2 5
 in2 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 6
 elseif a == 1 && i == 3 7
 in3 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 8
 elseif a == 2 && i == 1 9
 in4 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 10
 elseif a == 2 && i == 2 11
 in5 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 12
 elseif a == 2 && i == 3 13
 in6 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 14
 elseif a == 3 && i == 1 15
 in7 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 16
 elseif a == 3 && i == 2 17
 in8 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 18
 elseif a == 3 && i == 3 19
 in9 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 20
 end 21
 end 22
end 23
 24
for c = 1:3 25
 for i = 1:3 26
 if c == 1 && i == 1 27
 in10 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 28
 elseif c == 1 && i == 2 29
 in11 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 30
 elseif c == 1 && i == 3 31
 in12 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 32
 elseif c == 2 && i == 1 33
 in13 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 34

37

 elseif c == 2 && i == 2 35
 in14 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 36
 elseif c == 2 && i == 3 37
 in15 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 38
 elseif c == 3 && i == 1 39
 in16 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 40
 elseif c == 3 && i == 2 41
 in17 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 42
 elseif c == 3 && i == 3 43
 in18 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 44
 end 45
 end 46
end 47

Notice that the above code was only for two patients and the third patient would just

follow suit. The improved method shown before this was better but it was still very

tedious to write all the elseif statements and fill out the conditions of a and i or c and i.

The updated code did reduce the requirement for preformatting the files which was a

major part for the creation of the original code. Further work was required to make the

code more condensed.

With further refinement the code length was reduced even more. A data object was used

to allow for different variable names to be created within the for loop. Int2string is a

function that changes an integer into a string. See line 5 of the code ([‘name of the file’

int2str(index of the loops to count up from 1 until the end)]). A new matrix for the

patient was created with the name EEGsig# where # is a number from 1 to the number of

experiments. The xlsread(sprintf('prints the string name of the file%s %s

%d.csv',char(patient(p)),char(direction(d)),n),'C2:P99999'). With these modifications the

loop is about 50 to 60 times smaller than the original method used in [2] which was a

significant improvement on the manual method used prior to this work.

38

patient = {UserA';'UserB';'UserC'}; % Assigns the matrix patients with strings values 1
direction = {'left';'right';'neutral'}; % Assigns the matrix direction with strings values 2
for p = 1:3 3
 for d = 1:3 4
 for n = 1:3 5
 data.(['EEGsig' int2str(9*(p-1) + 3*(d-1) + n)]) = xlsread(sprintf('%s %s 6
%d.csv',char(patient(p)),char(direction(d)),n),'C2:P99999'); 7
 end 8
 end 9
end 10

39

Chapter 6: Two Motor Robotic Thumb

6.1 Proposed EEG Headset Design

This work explores using a cost effective EEG system to control a robotic thumb. The

process for this method begins by training a person on executing different movements

with their mind by thinking of an action. After a number of trainings, which varies

depending on the person, the patient becomes proficient at the actions. At this stage,

software is used to send signals to an embedded processor letting it know that the patient

is thinking of a certain action. The embedded processor interprets the message and then

activates a motor based on what EEG signal was sent.

Figure 6.1 shows the block diagram of how the system is designed. The EEG headset

connects to a computer with a keyboard. Both the EEG headset and the keyboard send

information to the computer. The computer has a controller on it to accept and analyze

the EEG data. The commands are interpreted as a key press from the software or the

actual keyboard. This is read by another part of the controller, and a command is sent to

the embedded processor. The embedded processor decodes the command and activates

one of the motors clockwise or counterclockwise. The block diagram of the thumb

control system is shown in Figure 6.1. This is the overview of the setup of the system

and how the components will communicate with each other.

40

Figure 6.1: Block Diagram for two Motor Setup

The embedded processor in Figure 6.1 controls the thumb motors based on commands

sent by the computer. An algorithm was designed to receive key strokes from the

keyboard and translate those key signal into motor movement. The pseudo code is split

into two different algorithms. The key code receives a command from the keyboard,

deciphers the time the key has been held, and outputs which motor should be moved and

Computer

Controller

Embedded

Processor

Motor #1 Motor #2

EEG Headset Keyboard

41

by how much. The motor code is set up to run two servo motors; as a result a pulse width

modulated (PWM) signal will be used. The pseudo code for the embedded processor is

as follows:

6.2 Key Command Code

1.draw()

2.BEGIN

3. SWITCH key

4. BEGIN

5. CASE a

6. SET Servo1TimeA = Servo1TimeA + 11

7. SET Servo1TimeB = Servo1TimeB - 2

8. CASE s

9. SET Servo1TimeB = Servo1TimeB + 11

10. SET Servo1TimeA = Servo1TimeA - 2

11. CASE z

12. SET Servo2TimeA = Servo2TimeA + 11

13. SET Servo2TimeB = Servo2TimeB - 2

14. CASE x

15. SET Servo2TimeB = Servo2TimeB + 11

16. SET Servo2TimeA = Servo2TimeA - 2

17. DEFAULT

18. SET Servo1TimeA = Servo1TimeA - 3

19. SET Servo1TimeB = Servo1TimeB - 3

20. SET Servo2TimeA = Servo2TimeA - 3

21. SET Servo2TimeB = Servo2TimeB - 3

22. END CASE

23. SET Servo1TimeA = adjust(Servo1TimeA)

24. SET Servo1TimeB = adjust(Servo1TimeB)

25. SET Servo2TimeA = adjust(Servo2TimeA)

26. SET Servo2TimeB = adjust(Servo2TimeB)

27. SET diffA = Servo1TimeA - Servo1TimeB

28. SET diffB = Servo2TimeA - Servo2TimeB

29. IF diffA > 0

30. FOR i = 0 to diffA incremented by ones

31. IF (i % 3) is 0

32. send a 1 to motor code

42

33. ESLE IF diffA < 0

34. FOR int i = 0 to diffA decremented by ones

35. IF (i % 3) is 0

36. send a 2 to motor code

37. IF diffB > 0

38. FOR i = 0 to diffB incremented by ones

39. IF (i % 3) is 0

40. send a 3 to motor code

41. ELSE IF diffB < 0

42. FOR i = 0 to diffB decremented by ones

43. IF (i % 3) is 0

44. send a 4 to motor code

45.END

46.FUNCTION

47.adjust(num)

48.BEGIN

49. IF num < minimum_pulse_time

50. SET num = minimum_pulse_time

51. IF num > maximum_pulse_time

52. SET num = maximum_pulse_time

53. RETURN num

54.END

6.3 Motor Code

INITIALIZE pulseA and pulseB to midpoint of the servo motors

1.loop()

2. IF the user has entered data

3. BEGIN

4. SET incomingByte = number from processing code

5. IF incomingByte is 1

6. IF pulseA < maxpulseA

7. SET pulseA = pulseA + 1

8. IF incomingByte is 2

9. IF pulseA > minpulseA

10. SET pulseA = pulseA - 1

11. IF incomingByte is 3

12. IF pulseB < maxpulseB

13. SET pulseB = pulseB + 1

14. IF incomingByte is 4

15. IF pulseB > minpulseB

43

16. SET pulseB = pulseB - 1

17. IF (current_time – lastpulseA >= refreshTime) and

 (incomingByte is 1 or 2)

18. BEGIN

19. turn the first servo motor on for the length of pulseA

20. SET lastpulseA = current_time

21. END

22. IF (current_time - lastpulseB >= refreshTime) and

 (incomingByte is 3 or 4)

23. BEGIN

24. turn the second servo motor on for the length of pulseB

25. SET lastpulseB = current_time

26. END

27.END

(Note: Servo motors work by PWM signals, so the position is set by the length of the

pulse.)

6.3.1 Arduino Code

The code written from the pseudo code shown in Section 6.3 was developed into working

code. The full code is shown in Appendix of this dissertation under Error! Reference

ource not found. and Error! Reference source not found. . Comments are provided in

the code to explain how the code works and specific functions that were used.

44

6.4 Equipment

6.4.1 Hardware Setup

The servo motors are connected to ground, + 5 V, and an output pin from the embedded

processor with a resistor in series to limit maximum current flow to and from the

processor. The size of the resistor varies on the maximum output of the embedded

processor and for this application 200 Ω is adequate.

6.4.2 Embedded Processor

The Arduino main micro-controller has digital and analog input/output pins. These pins

can supply 40 mA and 50 mA respectively. The processor can be programmed using a

standard USB cable and a computer. The embedded system can also communicate

serially with the computer via the USB cable it is programmed with. The processor does

not have to be released or burned to the chip when running experiments.

Two development environments were used. One was the Arduino programmer and the

other is called Processing [39] [40]. Arduino is a programming environment that is

generally used to program the Arduino. Processing is another programmer that can be

used with the Arduino if it is used in conjunction with the Arduino programmer.

45

6.4.3 EEG Headset

The thumb is driven by servo motors. Servo motors were used since they have a high

level of position accuracy. This accuracy allows the embedded platform used in this

research to control the thumb more reliably. The patient will have the Emotiv on them

and will be trained on how to move the motors which will move the thumb.

6.5 Equipment Setup

6.5.1 Embedded Processor

To prepare the embedded processor, the motor code is loaded on the chip first using the

Arduino programmer. This code sets up the output pins and other configurations that are

required to work the key command code. After the motor code is loaded, the key

command code is loaded by using Processing. The interface window then opens as

shown in Figure 6.2.

46

Figure 6.2: Arduino Processing Button [1].

The Arduino Processing user interface is used to train the patient before connecting the

motors to the system because the button colors change when a signal is sent to a motor if

it is attached. The button on the right is the default color and the button on the left is an

activated button. A red button is used when the second motor is activated. The interface

is also used when setting up the motors to ensure they are working properly without

having to have a patient attempting to move the motors.

The system setup was based on the initial design in Figure 6.1 and was modified using

the chosen hardware. A diagram of the final setup is shown in Figure 6.3. The Emotiv

has one-way communication with the computer. A USB cable connects the computer to

the Arduino for programming and for communication. The computer sends and receives

commands from the Arduino based on the controller on the computer. The Arduino

sends the desired position to the servo motors. The experiment setup consists of a

computer that has the Emotiv for the EEG headset and the Arduino as the embedded

processor. Two servo motors were connected to the Arduino.

47

Figure 6.3: Flow Diagram of Two Motor System [1].

48

6.5.2 EEG Headset

1. Ensure that the headset is fully charged. When the headset battery level gets low, it

will randomly lose connection.

2. Wet all the electrodes with one or two drops of saline solution.

3. Once wet, attach each electrode into the Emotiv headgear.

4. Plug the wireless USB dongle into the computer to allow it to connect to the

Emotiv.

5. Turn on the headgear and open the Emotiv Control panel program.

6. The system is now ready for experiments.

6.6 Safety

The only safety precaution taken is between the embedded processor and the motors.

The embedded processor has a resistor between the output pin and the servo motors. This

prevents the processor from getting damaged if there is a fault in a servo motor that

causes a short circuit. The Emotiv has its own protection to prevent harmful signals

coming from the computer.

49

6.7 Software

The code written from the pseudo code shown in Section 6.3 was developed into working

code. The full code is shown in [1]. Comments are provided in the code to explain how

the code works and specific functions that were used.

6.8 Experiment

To begin the experiment, the patient puts the EEG headset on correctly and establishes

connection to the computer. All subjects volunteered for these experiments. The next

step is to open the Control Panel, shown in Figure 6.4. The Control Panel is used to train

the patient. Once the program is open, a user is selected or a new user is input. With a

new user, it is important to train the headgear to the person because each person’s EEG

signals are unique. To do this, the Expressiv Suite tab is selected as seen in Figure 6.4 on

the right. On the left there are two tabs. The training tab should be selected which allows

the user to train for different face movements as seen in Figure 6.4. Training can be done

for each action along with a neutral training. The Control Panel-Expressiv Suite tab

allows the user to train and adjust the sensitivity of the different facial motions. The

number of trainings will depend on the patient’s unique EEG signals and ability to

concentrate, [1] [36].

50

Figure 6.4: SDK Control Panel, [36].

Now that the user has been trained for facial expressions, action training is required.

Specific actions can be trained to move a cube on the Control Panel-Cognitiv Suite Tab.

The first training required is two neutral trainings. Neutral training is when a subject is

relaxed and does not think of a given motion. The first training is a 10 second neutral

training and the second training is for 30 seconds.

With the Arduino ready to acquire key signals from the keyboard, the next step is to use

the EmoKey to bind actions to certain keys as shown in Figure 6.5. The different rules

that can be set have certain key(s) associated with them. The Trigger Condition is where

51

the different actions that were trained can represent a certain key on the keyboard shown

in Figure 6.5. In this figure we can see that for Rule 4 a teeth clench action was selected.

The trigger values were set for greater than a 0.2 value. The trigger value can be raised to

lower sensitivity to this action, or reduced to increase sensitivity for an action. This helps

to fine tune the different motions depending on whether they are easy to identify or are

very difficult to identify. Another option that can be changed in the software shown in

Figure 6.5 is how long the software presses the key. EmoKey key binding is used to set

the key that will be pressed based on a given motion from the Control Panel. Different

applications can be targeted also, [1] [36].

Figure 6.5: Emotiv Key Binding Interface, [36].

52

Figure 6.2 depicts the user interface for the embedded processor that is run using

Processing code. This interface allows signals to be sent to the embedded system using

the keyboard. The gray buttons on the left and right change colors when a different key

is pressed. Along with the color of the button changing, a signal is sent to the chip

indicating which key was pressed and for how long. In this system, to make the motors

move for a longer period, repeated signals or motions can be sent from the user, and the

servo motors will move further. Sending the signals to the motor at closer intervals

increases the speed of the motor.

With the patients trained, they can now experiment in moving the motors. The patients

were tasked to move the motors in different orders, different rates, alternating the motors

repeatedly. The subjects were able to reliably move the motors in all the different tasks.

Fatigue did set in with the patients at varying intervals, typically 15 to 45 minutes,

making it more difficult to control the motors; but they were still able to execute the tasks

remarkably well even under these conditions.

Figure 6.6 is a picture of the setup of the embedded system with the servo motors

connected to it. A USB cable is connected to the Arduino for programming and for

communications. The servo motors can be connected directly to the embedded platform

because they have their own internal controls to protect the circuit. A 100-200 ohm

resistor could be placed in the circuit between the Arduino and the servo motors as

protection if the servo motor shorted to ground. For larger motors an external 5 V power

supply should be used.

53

Figure 6.6: Arduino Servo Motor Setup

6.9 System Identification Fuzzy Controller Hybrid

6.9.1 Experiment Setup

There are various methods that have been used to study EEG data. SI has been used in

the past to identify different types of systems and would be a good option to study EEG

signals. Fuzzy logic has also been successfully used to identify signals. A hybrid SI

fuzzy logic controller may prove effective in controlling a prosthetic hand based on EEG

signals.

54

To create an effective SI experiment the EEG signals need to be recorded long enough,

with the various motions. The motion time and duration of each movement need to be

recorded for an effective SI experiment, such as shown in Figure 6.7.

This experiment will build on the current working setup shown in the previous section,

and the patients have been trained on how to use the system. In this experiment, the

patient will to do specific motions for so long. The EEG data will be recorded, along

with the amount of time the patient performed the experiment and the order the motions

where executed in. The EEG signals will be analyzed with SI using this information.

The output from the SI will then be input to a fuzzy controller to control motor

movement.

The patients will be told to send certain movements for a given period of time. The

motions and time that the patient will perform the tasks are shown in Figure 6.7. The

number 2 correlates to an up motion on the movement paths figure, the value 1 is for

right motions and 0 represents the neutral position. The value -1 represents left motions

and -2 is for down motions. The x axis is time and each unit is 0.0087 seconds.

55

Figure 6.7: Motion Path for Patients

6.9.2 SI of EEG Signals

The experiments took many more runs than expected because the user would often have a

motion that didn’t coincide with the path that was given to them. After the experiments

were conducted and the data was collected post processing could be performed. The

initial process is doing SI on the EEG signals.

The data from the Emotiv are stored as EDF files which need to be converted as

discussed in Section 3.3. The CVS file is a file that can be opened in Excel and then read

into MATLAB™. The path information needs to be created too. This was done by

recording the computer screen while conducting the experiment. A motion path was then

56

created for the experiment such as Figure 6.7. With the EEG and motion data imported

into MATLAB™ then the SI toolbox can be used to do system identification on the EEG

signals. The SI toolbox was used to do the SI on the signals. Figure 6.8 shows the SI

toolbox in MATLAB™. Once the data is imported the interface can be used to create a

state space model. See Appendix, System Identification Steps, for detailed steps on how

to create the model.

Figure 6.8: System Identification Toolbox from MATLAB™

57

After the model is created the data can be exported to the workspace. Drag the model to

the workspace button on the interface in Figure 6.8. The data can be plotted through the

tool or can be plotted directly from MATLAB™ using the plot commands. For the

commands to plot from MATLAB™ see Appendix, MATLAB™ Figure Formatting and

Creating Code.

Figure 6.9 shows the plot of the SI model of the EEG signals with the exported

information from the SI toolbox. The SI model is able to model most of the major

movements. The output of the SI model could be used to create signals to be sent to an

embedded platform as voltages that would interpret those signal voltages as motions.

The embedded process could then send signals to motors connected to a prosthetic hand

to move the thumb.

Figure 6.9 shows the best results out of all the experiments done and it miss-identified a

few motions which would cause the prosthetic hand to do a movement that the user did

not intended. The SI model also overshoots the desired motion in many of the instances

which isn’t a problem where there is not a movement associated for 3 or -3. If there was

it would cause additional incorrect movements. This would be frustrating for the user and

so additional work will be done to make the controller respond more accurately in future

work.

58

Figure 6.9: STI Model Output

6.9.3 Fuzzy Controller Design

The next step to build upon the SI model is using a fuzzy controller. To do this the

different motions will have to be programed into the controller. Using the MATLAB™

fuzzy toolbox a fuzzy controller is developed. Figure 6.10 shows the input membership

functions. The membership function range was defined between -4 to 4 as an input. The

five motions ranges that were used in the experiments were programed into the fuzzy

controller. The inputs have a range that will be used. From about -1.45 and lower is

considered a down motions range, -1.45 to 0.45 is the range for the Left motion, -0.55 to

0.55 is Neutral, 0.45 to 1.55 is a Right motion and greater than 0.45 is the Up motion

range. Different fuzzy types were tried but the best was trimf.

59

Figure 6.10: Fuzzy Controller Membership Function Input

Figure 6.11 shows the outputs that will be used. In this case the output range will be

from -2 to 2. These outputs are the same values as were in Figure 6.7. The outputs can

be many different things such as voltages. The output voltages could be used as an input

for an embedded processor which in turn control motors based on the output.

60

Figure 6.11: Fuzzy Controller Membership Function Output

The rules that were used for the fuzzy controller to correlate the input with the output are

show in Figure 6.12 These are set by the user and can be modified depending on the

need of the controller. Another way of looking at the rule is using the surface graph that

is shown in Figure 6.13. These are two different ways of visualizing the correlation

between the same input and output.

61

Figure 6.12: Fuzzy Controller Rules

Figure 6.13: Fuzzy Controller Surface Rules Visualization

With the fuzzy controller created it needs to be exported to MATLAB™’s workspace by

using file save, then export to workspace. The fuzzy controller has to be exported to the

work space to be used in Simulink™. To use the fuzzy controller in Simulink™ the

fuzzy logic controller block needs to be placed. Open up the fuzzy block and then enter

62

the name for the fuzzy controller that was exported to the MATLAB™ workspace. They

have to be the same name or it will not work. The input data needs to be imported from

the workspace using the block shown in Figure 6.14. The input matrix needs to be a 2D

array with one of the columns being the time and the other the actual data from the SI as

seen in Figure 6.9. The FuzzyOut1 block exports the results from the fuzzy controller to

the workspace. Adjust the time at the top by using play to reflect the amount of time in

the input value.

Figure 6.14: System Identification Fuzzy Controller Simulink Model

The results from FuzzyOut1 can be plotted using the method shown in Appendix Error!

eference source not found.. The results are shown in Figure 6.15. This can be

compared to Figure 6.9. The fuzzy controller miss-identifies some places but for the

most part is able to more successfully identify the motions better than the SI alone. Some

of the spots where it drops quickly and rises again can be ignored by the microcontroller

since the sampling rate is much slower. The motors will also not respond at that

frequency.

63

Figure 6.15: Fuzzy STI Model Output

6.9.4 Validations

With the fuzzy controller a validation needs to be done to see how effective the controller

worked. This was done by using different EEG signals by the same patient. The signal

was input to the SI and the output was plotted. The SI was not successful as can be seen

from Figure 6.16. The predicted motion does not follow the actual motions’ path like it

did in the previous section. The magnitude of the SI is also not within the range of -2 to

2 either.

64

Figure 6.16: Validation Plot

It is unfortunate that the validation was not successful which means that SI was not able

to successful identify the system. But an effective fuzzy controller was designed that was

able to more effectively control the output signal than the SI. This can be applied to other

problems where SI is successful in identifying the system.

In an attempt to make the SI work better an additional algorithm was tried. It is a Blind

source algorithm. It has been known to be used in EEG signal processing before. The

blind algorithm that is used is the Algorithm of Multiple Unknown Source Estimation

(AMUSE), [41]. The MATLAB™ code for the AMUSE is in Appendix AMUSE

MATLAB™ Code.

65

This algorithm did not perform very well. A blind source toolbox, ICALAB, was used to

see if it results were different. It was able to give a little better results than the

MATLAB™ version which was based on the original AMUSE paper. The ICALAB

toolbox’s results did not differ any from the original SI. The differences in outputs from

the SI and the AMUSE blind algorithm were negligible.

In conclusion of this section, the SI of the EEG signals was not effective. A success of

this part of the experiment though is that a fuzzy controller was successfully created that

would work off the SI, [41].

66

Chapter 7: Six DoF Prosthetic Hand Experiment

and Setup

The next phase of this research is to create a platform that can control multiple motors

with multiple inputs. The inputs are a sEMG signal and EEG signals. Figure 7.1 shows

the flow diagram of how the system is set up. A 3-sensor pair is used to collect the

sEMG signals and the Emotiv is used to collect the EEG signals. For this chapter a novel

approach is used, where a dual biological signal controller is used. The sEMG signals are

used to control the robotic fingers and the EEG signals are used to control a 2 DoF

thumb.

One of the motivations for dividing the control of the thumb from the fingers is that

sEMG signals for the thumb muscles are very difficult to acquire and what can be

measured are only a limited part of what is used to control the fingers. Most of the

control for the thumb originates in the hand. To overcome this, EEG signals will be used

so that the user of the robotic hand can have more control over the hand when preforming

a myriad of grasps.

67

Figure 7.1: Multi-Motor Setup.

. . . .

68

7.1 Equipment

The idea of this design is that the embedded system will be able to use any controller by

having an input file, which is a signal from the user. This will allow the hand to be

actuated by controllers designed in MATLAB™ or Simulink™ or a hybrid. This will be

an advantage because it will not limit the control design to just the block set supported by

Simulink™.

This design will not be real-time, but it will be one step closer to that goal. It will also

increase the versatility of the system. Using the Arduino as the embedded processor will

significantly expedite the coding process. The code is based on C, and the program is

open source. Thus, there is a large reservoir of code examples. It is also straight forward

to program compared to previous embedded processors. This will allow for a better

transition between people doing research on the hand because a lengthy training process

will not be required. This is done because only basic programming skills will be

required.

The equipment setup will be similar to the EEG set up in Section Chapter 6: , Two Motor

Robotic Thumb. The Emotiv will be used to acquire EEG signals from the patient. The

Arduino will be the embedded platform for receiving the different input singles and

controlling the motors. The sEMG setup will be similar to the setup in, [2] [3].

69

The existing embedded circuitry needs to be modified. The embedded system did not

have any protection or isolation from the servo motors. If there is a fault in the servo

motors, it could cause a surge that could harm the microcontroller.

The button on the desktop of the computer that received commands for the keyboard was

used in this platform. See Figure 6.2 for the button; the button changes colors depending

on the button that was pressed. This button sends commands to the Arduino through

Processing to move the motors. This button allows users to test the motors while the

code is running to ensure all the motors are working properly. The button for this work

will be expanded to have multiple buttons for the different motors

7.1.1 New Equipment

A couple of additional pieces of equipment are needed for this setup. An external power

supply is needed because the Arduino is not able to provide enough power to drive 6

servo motors as in the previous setup. A 5V external power source was used to power all

the servo motors.

Circuit protection is implemented in this system. Currently other experiments done by

students just attached the servo motors directly to the embedded processor pins. This will

not provide adequate protection for a final product used by a patient.

70

Servo motors’ most common failure and worst case failure is a dead short. The servo

motors are powered by 5 V. The Arduino max current is 50 mA for a single pin. The

protection resistor needs to be greater than 100 Ω as shown in Equation (14).

Rprotection =

 (14)

The sEMG was measured by the NORAXON MyoSystem 2000. The sampling rate is

1,000 samples a second (or 1,000 Hz frequency). The device did basic high- and low-

pass filtering to reduce noise from heart beats and other noise that can corrupt the sEMG

signals. The system then outputs that information into an output text file. The files saved

the three electrode readings with the raw sEMG data with only the noise removed and

another set of data was saved with the filtering and rectification of the data.

7.2 Equipment Setup

The EMG signals were measured with sEMG electrodes. The sEMG electrodes were

dual GS27 ECG and EMG disposable silver/silver chloride pre-gelled surface electrodes.

The electrodes measure the voltage on the skin’s surface created by the actuation of the

motor units within the forearm, along with other muscles which is why filtering is

required. The gel helps the sensors create better contact with the skin which decreases

the impedances. The gel is also conductive which allows for a better connection to the

skin. Before the sEMG sensors were placed, the subject’s skin was prepared according to

71

International Society of Electrophysiology and Kinesiology (ISEK) protocols [42]. The

arm was shaved in the region in Zone 2 where the sensors were to be placed. The area

was also cleaned with alcohol prior to electrode placement to allow for better contact

with the skin surface and also to lower the impedances. See Figure 7.2 for the electrodes

and electrode connectors. The electrodes measure the voltage between a red and black

electrode.

Figure 7.2: Electrodes and Connectors

The electrodes were placed in a 2-by-3 array on the surface of the forearm over the main

flexor muscle bellies. See Figure 7.2 for the sensor setup. The six sensors were placed in

the proximal portion of the forearm, towards the elbow. Using a measuring tape, a mark

was made 11 cm from the bottom of the wrist towards the elbow. Then a mark was made

half-way between the elbow and the 11 cm mark. The array of 6 sensors was centered at

72

this mark. Two sensors were placed perpendicular to the muscle fibers and centered at

the halfway mark. Then two sensors were placed towards the wrist and two towards the

elbow. They were all evenly spaced with enough space so that the sensors didn’t overlap

each other. For a full explanation of sensor placement rational see the author work in [2]

[3]. A reference electrode was placed on the elbow where no significant sEMG signal

can be measured. See Figure 7.3 for the electrode placement on the forearm. The

electrode pair closest to the wrist is the 1
st
 channel, the middle one is the 2

nd
 channel and

the 3
rd

 is the channel closest to the elbow.

Figure 7.3: Electrode Array Placement

73

7.3 Test Setup

7.3.1 sEMG Thesis Entropy Method

The prosthetic hand is based on the work that was done in Section Chapter 6: , Two

Motor Robotic Thumb, and work done in the author’s thesis [2]. The system is expanded

so that it is able to control six servo motors instead of two. The thumb is controlled by

two servo motors. The other four servo motors are used to control the fingers of the

hand.

The four servo motors that represent the fingers are controlled by EMG signals. These

signals are collected by three electrode pairs. These signals are a baseline signal, power

grasp of a ball, power grasp of a dynamometer, power grasp of a water bottle, power

grasp of a soft cylinder, pad to pad pincer grasp of all fingers together, pad to pad pincer

grasp of index, middle, ring and pinky fingers separately, key grip, and opening and

closing a lid.

The reason that these motions were used was that they are common tasks that people

often do in a day. The electrodes that are used for this project are disposable external

electrodes. Each electrode has its own adhesive that allows for a strong bond to the skin

which reduces the impedance. This results in cleaner and more reliable readings.

74

These signals were taken from work done in my thesis [2]. The signals were acquired in

zone 2 and were then post-processed by a fuzzy controller. These signals could then be

input into the Arduino for control of the fingers.

The post-processing on the sEMG signals consisted of multiple steps. The first step was

to convert the signals into a format that MATLAB™ could read by removing the titles

and other information that wasn’t needed. Then the entropy of each hand motion was

calculated for a number of patients. With this information, a range of entropy values

were created. The different hand motions and entropy values can be seen in Table 7.1.

75

Table 7.1: Entropy for Single Motion End Results [2]

Baseline Ball Close & Open
Water Bottle Close &

Open

Average z2^2

Average z2^2

Average z2^2

Average 0.7159

Average 0.2682

Average 0.2651

Range 0.494 to 0.9378

Range 0.1863 to 0.35

Range 0.2018 to 0.3285

Towel Close &

Open

Pad to Pad All

Fingers Close &

Open

Pad to Pad Index

Finger Close & Open

Average z2^2

Average z2^2

Average z2^2

Average 0.3309

Average 0.4008

Average 0.4406

Range 0.2916 to 0.3703

Range 0.2747 to 0.5269

Range 0.3393 to 0.5419

 Pad to Pad Middle

Finger Close &

Open

Pad to Pad Ring

Finger Close &

Open

Pad to Pad Pinky

Finger Close & Open

Average z2^2

Average z2^2

Average z2^2

Average 0.4645

Average 0.4246

Average 0.4508

Range 0.397 to 0.532

Range 0.3681 to 0.481

Range 0.3955 to 0.506

 Key Grip Lid Open & Close

Average z2^2

Average z2^2

 Average 0.4172

Average 0.2667

 Range 0.3518 to 0.4825

Range 0.1662 to 0.3672

In Table 7.1 the baseline has a much higher average than the rest of the experiments.

This means that the sEMG signals of people’s arms in a relaxed position are more

random than when they are doing a task. This is true since most of the signal in a relaxed

position is random noise which would have a higher entropy value and helps support that

76

these results have meaningful information. Using Table 7.1, ranges for the different hand

motions can be created. The relaxed position has a high value of entropy; the ball grasp,

water bottle, and lid experiments’ average spectral entropy are very close to each other,

around 0.26. These motions are similar in nature and require a large amount of force

while grasping an object. The towel grasp was different from the other power grasps.

There are many different factors that could cause it, but one reason may be that the towel

did not provide as much resistance as the ball, water bottle, or the lid. This would cause

the force required to be less, and as a result it would have a higher entropy value.

Simulations were conducted using the Simulink™ model for all the different hand

motions. The overall results from the experiments are summarized in Table 7.2. The

different channels are the electrode pairs of positive and negative. The lowest

performance was the 1
st
 electrode, the group closest to the elbow. It correctly

characterizes between the four different motions 50% of the time. The 3
rd

 electrode has

the highest accuracy, with 75% accuracy. The signals from the 3
rd

 electrode will be used

for the experiment.

77

Table 7.2: Summary of Signal Classification by the Intelligent Classifier, [2]

Electrode Correctly Characterized

1
st
 50.0%

2
nd

 58.3%

3
rd

 75.0%

System Total Accuracy 75.0%

This promising method for determining motion from sEMG signals will be expanded

later in this chapter. This will expand the work that was done in [2] to be used on the

prosthetic hand.

7.3.2 EEG Signals

EEG setup and signals used in the 6 DoF hand experiment will be taken form the

experiments in Section Chapter 6: , Two Motor Robotic Thumb. There will be some

post-processing that will be done on the fuzzy controller output to make it work with the

developed system which will be discussed in a later section.

78

7.4 Six DoF Hand Tools and Interface Development

7.4.1 Hand Visualization Tool for a Six DoF Hand

To help facilitate prototyping and testing for a prosthetic hand, a platform was created

that visualizes the hand and receives inputs the same as the prosthetic hand would. To

help in the development of algorithms for a large group of researchers, a virtual hand was

developed. Figure 7.4 and Figure 7.5 are pictures of the virtual hand fully opened and

closed. This hand has 6 DoF, one for each finger and two for the thumb. Movement is

shown with fingers and thumb sliding and the change of color for the second degree of

freedom on the thumb which allows the user to quickly see that the hand is responding to

commands. The virtual hand was created with Processing. This was the same program

used for creating the button in Figure 6.2.

79

Figure 7.4: Virtual Hand Open

Figure 7.5: Virtual Hand Closed

7.4.2 Control of Virtual Hand

The fingers can be moved with the keyboard or with an input from a text file. The

keyboard keys are as follows: for the pinky ‘a’ opens and ‘z’ closes, for the ring finger ‘s’

opens and ‘x’ closes, for the middle finger ‘d’ opens and ‘c’ closes, and for the index

finger ‘f’ opens and ‘v’ closes. The thumb has two DoF so for the 1
st
 DoF ‘g’ opens and

‘b’ closes, and for the 2
nd

 DoF ‘h’ opens and ‘n’ closes. The colors change so that it is

easy to recognize that the position has moved; especially when the hand is fully open and

begins to close. When the fingers move on the screen, the embedded system will also

send signals to the corresponding pins which will move the motors. Servo motors were

used for these experiments.

80

The code has different options that can be set depending on the testing that will be

performed. There is a manual mode where the user can move the fingers with the

keyboard keys. Another is that it will read in a text file, and based on the numbers that

are in the text file, the fingers will move accordingly. The code will also allow for

predetermined hand motions to be used as well. For example, [2] had a pad to pad

middle finger grasp which would move the middle finger and the thumb. Sending the

command with this motion would move the middle finger and the thumb to their fully

closed position while leaving the rest of the fingers open.

Depending on the desired motion, the input numbers may need to be modified. For the

default, the following numbers will move the correlating finger. For the pinky 0 opens

and 1 closes, for the ring finger 2 opens and 3 closes, for the middle finger 4 opens and 5

closes, and for the index finger 6 opens and 7 closes. For the thumb’s 1
st
 DoF, 8 opens

and 9 closes and for the 2
nd

 DoF, 10 opens and 11 closes.

The core code in Processing sends commands to the virtual hand on the computer screen

and the Arduino. When the keys are pressed on the keyboard, the signals are used to

send positions to the virtual hand and also the embedded processor through the Arduino

Programmer. The embedded processor uses the same keyboard command to increase or

decrease the PWM signal sent to the servo motors which in turn adjusts the position of

the motor/finger.

81

7.4.3 sEMG Entropy Algorithm Implementation

After getting the virtual hand working with the keyboard and having the servo motors

move at the same time, the next stage was to make it so the virtual hand could move with

the biological signals. The embedded system will be able to receive two different signals

and use them for controlling the hand.

The sEMG work done previously needs to be expanded for this hand. This section will

implement the work done in [2] [3] with multiple hand motions in a single signal file.

Below, Figure 7.6 shows sEMG signals from a person’s forearm for a number of different

hand motions. The first half of the signal is of a person holding their hand still, 0 seconds

to 13 seconds. The first group with the largest amplitude sEMG signals is a power grasp,

13 seconds to 16 seconds. The next group of signals is a pad to pad middle finger

motion, 16 seconds to 18 seconds, and the last group is a key grip, 18 seconds to the end.

82

Figure 7.6: sEMG Signal for Multiple Hand Motion

The signal in Figure 7.6 is then input into the entropy calculation algorithm. The

algorithm was modified from the original one in [2] [3] because it was only used to

identify a single motion at a time and only one motion was given at a time to the

algorithm. The algorithm then calculated the entropy of the entire signal in question.

The modified algorithm accepts many motions in one signal. To do this, the algorithm

had to break the signals into smaller pieces and calculate the entropy for those smaller

segments. The main signal is broken into about two second (2.07 seconds) segments, and

then the entropy is calculated. This time was used because there has to be enough data

points to calculate the entropy to get meaningful results. Also, based on experimenting,

around 2 seconds gave the best results for the sampling time of the system used.

83

After that, the entropy values are then input into the fuzzy controller and the controller

determines the motion. The membership functions for the fuzzy controller were modified

slightly from the original ones in [2] [3] and are shown below in Figure 7.7. The rules of

the fuzzy controller have not been changed and are shown in detail in [2] [3]. Note that

the baseline or neutral is when the people are holding their hand still and MFinger means

pad-to-pad middle finger grasp.

Figure 7.7: Fuzzy Controller Membership Functions Plot

The fuzzy controller then outputs a number depending on the rules and membership

functions. The output values are defined as shown in Figure 7.8. This plot shows that if

a power grasp is identified, a 2 will be output, a key grip is represented by 4, a pad-to-pad

middle finger grasp is shown by a 6, and if the hand is doing nothing or relaxed then a 10

is output.

84

Figure 7.8: Fuzzy Controller Output Values

The flow of the algorithm is shown in Figure 7.9. The signal from Figure 7.6 is input

into the fuzzy controller which is stored in MATLAB™’s workspace. The controller

reads the file from the workspace controller, determines the motion, and outputs a

number based on Figure 7.8. The scope displays the graph and can also be set to save the

plot back to the MATLAB™ workspace.

85

Figure 7.9: sEMG Fuzzy Controller Flow Diagram

Figure 3.1 is a plot of the actual motions that were performed in Figure 7.6 using the

fuzzy controller output values. Figure 7.11 is the resulting plot from the fuzzy controller.

Comparing the two plots shows that the fuzzy controller was very successful in

characterizing most of the signal. The controller was able to successfully identify the

correct motions 90 % of the time. These are promising results because of such a high

accuracy in correctly identifying the different motions.

86

Figure 7.10: sEMG Actual Hand Motion

Figure 7.11: sEMG Predicted Hand Motion with Entropy

87

7.4.4 EEG Signal

The signals used for the EEG portion of this experiment are similar to the ones used in

Chapter Chapter 6: . This method did not need to be expanded on further to be able to

run on this platform as did the sEMG signals. These signals are also being used to prove

that the controller and embedded processor can receive signals from two different

biological signals.

7.4.5 Text File Format

With sEMG signals and EEG signals processed so that they can be run and an output

obtained, an input method to the prosthetic hand platform needs to be created. Different

methods were considered and finally it was decided the best method would be to use a

text file as the input to the prosthetic hand platform. The advantage of the text file is that

most computers can natively handle text files. Many program used to create controls

have the option to output the file as a text file. Also, saving as a text file reduces the size

of the file which is important when working with embedded processors. File size is

important to limit on embedded platforms because memory is often small and it is

expensive to add. The add-on memory often has slower execution speeds with larger

files.

For the text file method to work properly a standard of how to format the data in the file

needs to be set. The simplest and most straightforward method is to make it so only one

88

number was on a line. The number could be from 0 – 99. For practical purposes this was

made for this range. It can be expanded if need.

The sEMG data plotted Figure 7.11 is an array of numbers. This output can be put into a

text file that can be read by the Arduino. The numbers from the graph can be put into a

text file with carriage return after each number or data point. The Processing code sends

the data to the embedded processor and the Arduino uses that information to change the

position of the servo motor.

The numbers in the text file need to correlate to the movement numbers listed in Chapter

Chapter 7: , Section 7.4.2 Control of Virtual Hand mainly; 0 opens and 1 closes the

pinky, 2 opens and 3 closes the ring finger, 4 opens and 5 closes the middle finger, and 6

opens and 7 closes the index finger. For the thumb’s 1
st
 DoF, 8 opens and 9 closes and

for the 2
nd

 DoF, 10 moves the thumb up and 11 moves the thumb down if applicable.

To open the entire hand a repeated sequence of odd numbers can be sent to the hand.

Likewise to close then hand even numbers can be placed in the text file. To do different

hand grasps they can be done by sending a sequence of numbers required to perform the

grasp in the text file. Another method is to send a number from 0 – 10 in the Arduino

code and when that number is sent have the Arduino move the motors to the desired

positions. Both methods are used in the code in Appendix under the Six Servo Motor

Arduino and Processing code.

It is important to note that the signal text files that are read using Processing need to be

saved in the same file as the Processing main code and Class code. The file name also

89

has to be the same as the file name in the Processing code and it is best to not use spaces

in the text file name and names of code.

7.5 Six DoF Hand Experiment

With the virtual hand created and the motor control from the embedded processor

developed, the next stage is to control the motors with actual biological signals. For this

part of the process a universal method needs to be implemented. In the past [1] [3] [16]

[43] control algorithms were developed. The problem is that the algorithms were

developed with different programs. Some were made in MATLAB™ or Simulink™.

These are both part of MATLAB™ but the way the code interacts with an embedded

processor requires completely different toolboxes. It is also possible to develop control

algorithms for a system with LabVIEW™, Micro-Cap, LTSPICE, or even C++. With so

many different programs that could possibly be used to develop control for the prosthetic

hand a universal approach needs to be taken to ensure that all the different controls could

be tested on this platform.

7.5.1 Virtual Hand and Embedded System’s Prosthetic Hand Code

To conduct the experiment, an interface between the virtual hand and the embedded

processor was created. For the two to interact with each other, first the embedded

90

processor needs to be programed with the Arduino Programmer and then the virtual hand

code is loaded. The Arduino code receives information that is sent to it from the

processing code. Based on those signals the processor moves the appropriate motors and

executes other commands. The main Processing code initializes all the variables, uses

the class to create the virtual hand, is in charge of controlling the virtual hand, reading the

biological signal files and sending signals to the embedded processor. Both these files

need to be in the same file for the code to work properly.

The Processing code uses a class to reduce the size of main(). The class Shape is in a

separate file and is used to create the hand in Figure 7.4 and Figure 7.5. This class code,

along with the other Processing and embedded code, uses a matrix to reduce the size of

code. Instead of writing for loops for each finger and thumb, a single for loop was

created that steps through each element in a matrix. Each index in the matrix represents a

different finger or thumb. This makes the code more compact and elegant. The code

would be about double the length - if not more - otherwise. This makes it easier to

update the code and change parts of the code too. It also reduces redundant code which is

a must in professional programming.

The flow of the code can be seen below in Figure 7.12. This shows the flow of the

processing code. The flow diagram of the Arduino code is in Figure 7.13.

91

Figure 7.12: Processing Code Flow Diagram

92

Figure 7.13: Arduino Code Flow Diagram

Arduino

Setup

Init Pin Numbers

Init PWM Limits

Init Servo Motor

Positions

Init Serial Port

Main (Void loop())

Key Available From
Processing?

False

True

Read Key

Set Position

93

7.5.2 Servo Motor and Embedded Platform

With the embedded processor and the computer being able to communicate with each

other, the motors and circuitry were connected. As stated earlier in this chapter the main

circuit protection used were resistors. The resistors were connected in series with the

digital output pins of the embedded processor. The other end of the resistor was

connected to the signal pin of the servo motors. The power for all the servo motors was

provided externally with a power supply. This reduced the loading effect on the

embedded platform since it is unable to provide enough current to drive all the servo

motors under a loaded condition. All the grounds have to be connected; this means that

the power supply, servo motor and embedded processor grounds need to be connected. If

not, the embedded processor voltage relative to the servo motors will be different and the

motors will not move or will respond in unpredictable ways.

Figure 7.14 shows the setup of the embedded processor with the circuit protection, power

supply and the servo motors. These servo motors were successfully moved using the

keyboard in conjunction with the virtual hand. They both moved when the keys were

pressed, and after some adjustments, the virtual hand and the servo motor reached their

limits at the same time.

94

Figure 7.14: Six Servo Motor Setup with Embedded System

7.5.3 Biological Signal Input

Once the key command part of the code was validated the biological signal capacity was

tested. Two different signals were used for this part: a sEMG signal and an EEG signal.

Both signals were acquired with different data acquisition devices and processed using

different algorithms. Both algorithms used a combination of MATLAB
®
 and Simulink

®
.

The results from the algorithms were then converted into a text file following the rules in

Section 7.4.5. Sample of the text file can be found in Appendix, sEMG Processed Signal

95

Text File Sample, and EEG Processed Signal Text File Sample. These files were much

shorter than the original files because they had thousands of data points and often a

number may be sent hundreds of times in a row. Notice in the sEMG signal file that

close or open commands are sent by a string of even or odd numbers correlating to the

fingers. In reality the fingers are not moving in parallel but to the naked eye they appear

to move together.

This part of the experiment worked well. There was no buffering or delays while the file

was being sent. All six servo motors were able to be moved with the system setup. To

finalize this work it was decided to use this code on an actual robotic hand.

7.6 Five DoF Robotic Hand Implementation

The final stage of this dissertation was to implement the working prosthetic hand system

with an actually robotic hand. Figure 7.15 is a picture of a robotic hand with 5 DoF.

This robotic hand is controlled by 5 different servo motors. Each servo motor controls a

different finger or the thumb. The hand has the ability to grasp different objects.

96

Figure 7.15: Five DoF Prosthetic Hand

The fingers and thumb are connected to the servo motor with a rod. The servo motor

then pushes and pulls the rod to move the finger or thumb. Because the servo motors

push and pull rods at the extreme ends of motion, the servo motors cannot provide as

much torque to the fingers at fully closed or fully open positions. This also limits the

range of motion to much less than 160 degree movement that a typical servo motor has.

Some motion is as little as 20 degrees.

Even though this hand has these short comings it is a simple and elegant design. For this

final experiment it was shown that a robotic hand could be controlled using this system.

97

The actual hand and the prosthetic hand could be moved in unison. This showed too that

a prosthetic hand could be controlled using sEMG and EEG signals at the same time.

98

Chapter 8: Results and Analyses

The results are excellent and showed that the entire system could control a robotic hand.

The EEG system worked reliably for controlling a robotic thumb along with sEMG

signals being used to control the fingers of the robot. The system was successfully able

to execute the control of the hand with different algorithms developed in different ways

using two programs.

sEMG signals were successfully used to control robotic fingers successfully. The

author’s work in [2] and [3] was expanded on so that the entropy fuzzy algorithm could

be used to receive multiple hand motions in one file and successfully identify the

different motions. This advanced the algorithms functionality and made it much more

versatile.

For the sEMG signals, some of the variation and unsuccessful characterization may have

been due to there being male and female subjects. Research done in [44] shows that sex

causes variability in EMG amplitudes. Gender also may affect entropy calculations [2].

Overall the use of sEMG signals was successful. The sEMG signals were correctly

identified. Those identified motions were then used to send by the code to control robotic

fingers. Some of the hand motions that were used only moved one finger while others

moved all four fingers.

99

Experiments showed that the system successfully identified signals and actuated the

motors for the thumb 90.5% of the time. Occasionally the user needed to resend the

signal two or three times to obtain a response. This generally depended on the mental

fatigue of the person. After an hour of using the system the subjects began to have some

difficulties sending the signals. The EEG identification was 80.0% at that time. With the

results working well, a pod cast was created showing the system, explaining the setup,

and showing the functioning system.

Initially training the patients was critical to the success of the EEG headset system.

Sometimes an action would have to be trained numerous times. These repeated trials

helped the system better identify the unique user. The users would also become more

proficient at executing the actions. Once the training was completed the patients were

able to reliably use the EEG system.

The few times the EEG system didn’t identify the signal correctly, before fatigue began

to set in, was mostly due to excessive eye blinking while the signal was being sent.

Blinking is known to cause problems with EEG measurements and is called artifact noise.

With practice the subjects were able to send signals without interrupting the signals by

blinking. If the patients took time to train, sometimes electrodes needed saline solution

reapplied to them. These steps allowed for high accuracy which made controlling the

prosthetic thumb feasible.

A virtual hand that represented a 6 DoF hand was developed and implemented. The hand

was able to display when signals were sent either by the keyboard or by a biological

100

signal or signals. The virtual hand has a high degree of accuracy so that if precise hand

movements are required it can handle these.

The sEMG and EEG processing algorithms were both implemented in MATLAB
®
 and

Simulink
®
. These algorithms were processed differently within these programs. The

results from the algorithms were then formatted into a text file. This text file was then

used for the control of the robotic hand. This part of the project was successful in

developing a method that could use a universal input to control a hand rather than one

specific program. This will help reduce cost because to run this a design team will not

need multiple licenses of expensive program packages.

The system identification effort in this work was unsuccessful. A possible reason that it

didn’t work was that there is a lot of noise in sEMG signals. It is difficult to filter out all

the noise from the surrounding environment and collect a pure sEMG signal. The

success of this part of the project was that a fuzzy controller was designed that filtered the

output from the SI. The fuzzy controller made the signal much more uniform which

would be desirable when implementing on an embedded platform.

The hand was able to work without the actual robotic hand being attached to the system.

The ability to work independently of an actual robotic hand connected to the system will

allow for it to be used for testing algorithms, or updating the code without the actual

prosthetic hand being attached. This will allow for a lab to have multiple people or teams

working on a project with only a few prosthetic hands that will lead to cost savings to the

labs. The code was also written in C allowing for many users with different backgrounds

to be able to work on the source code if needed.

101

A minor issue with the 5 DoF hand was that for some fingers the limits could not be

adjusted to prevent the finger from shaking or making a humming noise. This was also

noticed in the 6 DoF experiments. It appears to be a result of a defect with some servo

motors. These servo motors are inexpensive and so defects are more likely to occur. For

a final design it is suggested that more precise, robust, industrial grade servo motors be

used to prevent this from occurring in the final prosthetic hand.

The promising work in [1] [2] [3] was successfully implemented on an embedded

platform and could control a robotic hand. The platform could be controlled by either a

computer or biological signals. The code for the embedded processor and the virtual

hand were both written in a common language to allow for a wider audience to be able to

work on modifying or updating the code for their projects. The code was also able to

control up to 6 motors. These abilities make this platform a more valuable test bed for

experimenting with control algorithms and different prosthetic hands.

102

Chapter 9: Conclusion

With the increasing number of people who have missing limbs, the need for prosthetics is

increasing. Prosthetic hands are advancing in dexterity and complexity with modern

robotics. The controls for the hands are getting more advanced and are allowing for more

dynamic inputs. This dissertation looked at how to advance the control of prosthetic

hands. EMG signal processing algorithms have been used in the past for controlling

simple robotic hands [2], but with the progression of robotic hands newer EEG methods

may be able to be utilized in conjunction with sEMG signals to control a prosthetic hand.

This dissertation had multiple objectives. Expand on the author’s thesis [2]: specifically

further develop the sEMG control method. Develop a method to use EEG signals to

control a robotic thumb of a prosthetic hand with 2 DoF. Develop a platform that is able

to control a robotic hand using multiple biological signals. Also, this system needs to be

able to work with different programming environments used for creating control

algorithms.

Non-invasive methods of controlling prosthetic hands are being researched because of the

need for a low cost dynamic prosthetic hand because surgery is not need to place the

sensors. This dissertation improved on the previous work in [2] of the use of surface

sensors to acquire EMG. This work modified an existing entropy algorithm that was a

viable control strategy. It was modified so that it can be used to identify different hand

motions in continuous signals with a high level of accuracy.

103

This paper presented a reliable method that is able to control a 2 DoF thumb by using

EEG signals. This system uses an EEG headset with surface sensors. This is a cost-

effective solution for controlling a robotic thumb. The results showed that surface EEG

electrodes can be used to successfully control a robotic thumb. A working model was

synthesized that has been demonstrated to work with 90.5% accuracy in executing the

user desired motion.

sEMG and EEG control algorithms were developed using multiple programs. Despite

having the algorithms developed with different programs the outputs from the algorithms

were then converted into text files based on set formatting rules. A platform was

developed that use these text files to control a robotic hand.

The platform was developed using C, a common programing language. This platform

also had a virtual hand. This virtual hand mimics what the actual hand does. This is

useful for testing if the robotic hand is unavailable. The hand, virtual or real, can be

controlled by the two different biological signals, or by keyboard commands. The system

also has an embedded processor that is in charge of controlling and interfacing with the

motors. Previous work didn’t implement any protection for the embedded processor so

this was modified to provide overcurrent protection.

This dissertation successfully created a system that was able to control an actual robotic

hand. This platform can also control a virtual hand and a robotic hand simultaneously. It

can take two different biological signals, sEMG and EEG, both created with different

algorithms and use them in combination to control the hands. Both of these novel

algorithms have shown promising results in controlling a prosthetic hand. This work was

104

done with a cost effective system, robotic hand, and non-invasive sensors. This worked

show that an agile system can be used to prototype different algorithms with or without

an actual robotic hand attached to the system.

105

Chapter 10: Future Work

More experiments can be performed on a multitude of subjects to verify that weight,

gender, age and other parameters do not affect the efficiency of the system. If these do

affect it, work can be done to overcome these problems. Further research can be done in

developing more robust filters to remove the blinking noise that is very prominent in

EEG signals. Experiments can be conducted to see how much time it takes for fatigue to

set in and how much, if any, the time of the day affects the results. Additional work can

be done in looking how to use SI for processing sEMG signals. Further work can be

done with the embedded system by developing an independent ATmega 328 circuit board

system to reduce the total size of the embedded platform. Work should also be done to

determine if this system can be patented.

106

References

[1] Jensen A.N., Clark A., Sparks N., Chiu S., and Schoen M., "Embedded

Electroencephalogram (EEG) Processing and Control for the Actuation of a

Prosthetic Thumb Prototype," IEEE International Conference on

Electro/Information Technology, May 2013.

[2] Jensen A. N., Intelligent Classification of Surface Electromyographic (EMG)

Signals Based on Entropy for the Control of a Robotic Hand, 2011, Thesis.

[3] Jensen A.N., Potluri C., Clark A., Chiu S., and Urfer A., "Intelligent Classification

of Surface Electromyographic (sEMG)," IEEE International Conference on

Electro/Information Technology (EIT), May 2013.

[4] (2011) ACA News: National Limb Loss Awareness Month. [Online].

http://www.bocusa.org/aca-news-national-limb-loss-awareness-month

[5] Zoroya G. (2011, Sept) Injuries cost more troops their limbs. [Online].

http://www.usatoday.com/news/military/story/2011-09-19/troops-injuries-war-

casualties-amputations-lost-limbs/50472074/1

[6] Roth B., and Salisbury J. Zinn M., "A New Actution Approach for Human Friendly

Robot Design," Int Robot Res., pp. 379-398, 2004.

[7] Heinzmann J. and Zelinky J., "A Safe-Control Paradigm for Human-Robot

Interaction," Inteligent Robot System, vol. 24, no. 4, pp. 295-310, 1999.

[8] Sherman E., "A Russian Bioeleciric-Controlled Prosthesis:Report of a Research

Team from the Rehabilitation Institute of Montreal," Canad. Med. Ass. J., vol. 91,

http://www.bocusa.org/aca-news-national-limb-loss-awareness-month
http://www.usatoday.com/news/military/story/2011-09-19/troops-injuries-war-casualties-amputations-lost-limbs/50472074/1
http://www.usatoday.com/news/military/story/2011-09-19/troops-injuries-war-casualties-amputations-lost-limbs/50472074/1

107

pp. 1268-1270, 1964.

[9] (2012, Dec) CBSNews. [Online]. http://www.cbsnews.com/8301-18560_162-

57559331/paralyzed-woman-uses-mind-to-move-robotic-arm/

[10] Shadow Robot Company. (2013) Shadow Robot Company. [Online].

http://www.shadowrobot.com/products/dexterous-hand/

[11] Sandia National Laboratories. (2012, August) Sandia Labs News Releases. [Online].

https://share.sandia.gov/news/resources/news_releases/robotic_hand/

[12] Artemiadis P. K., Shakhnarovich G., Vargas-Irwin C., Donoghue J. P. and Black M.

J., "Decoding grasp aperture from motor-cortical population activity," in

Proceedings of the 3rd International IEEE EMBS Conference on Neural

Engineering, Kohala Coast, Hawaii, 2007.

[13] Madhow, U., "Blind Adaptive Interference Suppression for Direct-Sequence

CDMA," Proceedings of the IEEE, vol. 86, no. 10, pp. 2049–2069, 1998.

[14] Agashe, H. A. and Contreras-Vidal, J. L., "Reconstructing hand kinematics during

reach to grasp movements from electroencephalographic signals," in 33rd Annual

International Conference of the IEEE EMBS, Boston, Massachusetts, 2011.

[15] Mu Z., and Hu J., "Research ofEEG Identification Computing Based on AR Model,"

in International Conference on Future BioMedical Information Engineering, 2009,

pp. 366-368.

[16] Potluri C., Yihun Y., Jensen A.N., Anugolu M., Chiu S., Schoen M., Naidu D.S.,

"Optimal Tracking of a sEMG based Force Model for a Prosthetic Hand," IEEE

Engineering in Medicine and Biology Society, September 2011.

http://www.cbsnews.com/8301-18560_162-57559331/paralyzed-woman-uses-mind-to-move-robotic-arm/
http://www.cbsnews.com/8301-18560_162-57559331/paralyzed-woman-uses-mind-to-move-robotic-arm/
http://www.shadowrobot.com/products/dexterous-hand/
https://share.sandia.gov/news/resources/news_releases/robotic_hand/

108

[17] Potluri C., Jensen A.N., Anugolu M., Sriram G., Liu S., Chiu S., and Urfer A., "PIC

32 Microcontroller Based sEMG Acquisition System and Processing Using Wavelet

Transforms," World Comp International Conference on Embedded Systems and

Applications (ESA), 2012.

[18] Fortuna J. and Capson D., "ICA for Position and Pose Measurement from Images

with Occlusion," Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, (ICASSP ’02), vol. 4, pp. 3604–3607, 2002.

[19] Oja E., Kiviluoto K. and Malaroiu S., "Independent Component Analysis for

Financial Time Series," in IEEE Adaptive Systems for Signal Processing,

Communications, and Control Symposium (AS-SPCC), Lake Louise, Alta, 2000, pp.

111–116.

[20] Sparks N. T., Signal Processing Of Electroencephalogram: A study On Blind Source

Separation With System Identification And Subtractive Clustering, 2012, Thesis.

[21] Kandel J. and Schartz E., Principles of Neural Science. New York: Elsevier/North-

Holland, 1981.

[22] Hoehn E. and Maarieb K., Human Anatomy and Hysiology, 7th ed. San Fancisco,

United States of America: Pearson Benjamin Cummings, 2007.

[23] Teplan M., "Fundamentals of EEG Measurement," Measurement Science Review,

vol. 2, no. 2, 2002.

[24] John R. Hughes, EEG In Clinical Practice, Second Edition ed. Newton, MA, USA:

Butterwork-Heinemann, 1994.

[25] BCI 2000. BCI 2000. [Online].

109

http://www.bci2000.org/wiki/index.php/User_Tutorial:EEG_Measurement_Setup

[26] Candy, J. V., Model-Based Signal Processing. Hoboken, New Jersey: John Wiley &

Sons, Inc., 2005.

[27] Juang, J. N., Applied System Identification. Englewood Cliffs, NJ: Prentice Hall,

1994.

[28] Alvin K.F., Robertson A. N., Reigh G. W., and Park K. C., "Structural system

identification: from reality to models," Computers and Structures, vol. 81, pp. 1149-

1176, 2003.

[29] Ho B.L., Kalman R.E., "Effective construction of linear state variable models from

input/output data," in Proceedings of the Third Annual Allerton Conference on

Circuit and System Theory, Regelungstechnik, 1966, pp. 449-459.

[30] (2013) State Space Equation. [Online].

http://cs.bilgi.edu.tr/pages/courses/year_4/comp_422/Archive/2006-

2007/Week01/Week01.pdf

[31] Lim R., Phan M., and Longman R., "State-Space System Identification with

Identified Hankel Matrix," Technical Report No. 3045, Princeton University,

Princeton, NJ, September 1998.

[32] Candy, J., Model-Based Signal Processing. Hoboken, New Jersey, USA: John Wiley

& Sons, Inc., 2006.

[33] Matlab. (2011) N4SID. Document.

[34] Potluri, C.; Kumar, P.; Anugolu, M.; Chiu, S.; Urfer, A.; Schoen, M.; Naidu, D.S.,

"sEMG Based Fuzzy Control Strategy with ANFIS Path Planning For Prosthetic

http://www.bci2000.org/wiki/index.php/User_Tutorial:EEG_Measurement_Setup
http://cs.bilgi.edu.tr/pages/courses/year_4/comp_422/Archive/2006-2007/Week01/Week01.pdf
http://cs.bilgi.edu.tr/pages/courses/year_4/comp_422/Archive/2006-2007/Week01/Week01.pdf

110

Hand," in IEEE RAS and EMBS International Conference on Biomedical Robotics

and Biomechatronics, Tokyo, September 2010, pp. 413-418.

[35] Griffin M. (2011, May) BCI 2000. [Online].

http://www.bci2000.org/wiki/index.php/Contributions:Emotiv

[36] Emotiv. (2013) Research Edition. [Online]. http://emotiv.com/store/sdk/bci/research-

edition-sdk/

[37] Emotiv. SDK User Manual for Emotiv. PDF. [Online]. www.emotiv.com

[38] (2012, December) Arduino. [Online]. http://arduino.cc/en/

[39] Banzi M., Cuartielles D., Igoe T., Martino G., and Mellis D. Arduino Alpha.

[40] Fry B. and Reas C. (2001) Processsing.

[41] Cichock A., Amari S., Siwek K., Tanaka T., Phan A., Zdunek R. (2007) ICALAB –

MATLAB Toolbox Ver. 3 for signal processing.

[42] "Standards for Reporting EMG Data," Journal of Electromyography and

Kinesiology, vol. 9, no. 1, pp. III-IV, February 1999.

[43] Kumar P., Chen C. H., Sebastian A., Anugolu M., Potluri C., Fassih A., Yihun Y.,

Jensen A. N., Tang Y., Chiu S., Bosworth K., Naidu D.S., and Schoen M., "Adaptive

Hybrid Data Fusion Based Identifications of Skeletal Muscle Force with ANFIS and

Smothing Spline Curve Fitting," IEEE International Conference on Fuzzy Systems,

pp. 932 - 938, June 2011.

[44] Zurcher U., and Kaufman M. Sung P., "Comparision of Spectral and Entropic

Measures for Surface Electromyography Time Series: A Pilot Study," Journal of

Rehabilitation Research and Development, vol. 44, no. 4, pp. 599-610, 2007.

http://www.bci2000.org/wiki/index.php/Contributions:Emotiv
http://emotiv.com/store/sdk/bci/research-edition-sdk/
http://emotiv.com/store/sdk/bci/research-edition-sdk/
www.emotiv.com
http://arduino.cc/en/

111

[45] Tong L., Liu R., Soon V. and Huang Y., "Indeterminacy and Identifiability of Blind

Identification," IEEE Transactions on Circuits and Systems, vol. 38, no. 5, pp. 499-

509, 1991.

112

Appendix

Emotiv File Saving Process After an Experiment

Once the user has been trained, setup is complete and an experiment is conducted and the

results want to be saved follow the procedures below:

Open the Emotiv TestBench program, see Figure 0.1. Do not close the control panel

program. TestBench program, in Figure 0.1, allows the operator to record the EEG

signals, and is only a part of the research edition of the software. To save the data, click

save, enter the information prompted for and save the data in the desired location.

113

Figure 0.1: Emotiv TestBench, [45]

Finally, once the data has been recorded, the data can be either played back by using the

load button in the bottom left hand corner as seen in Figure 0.1, or can be converted to an

Excel CSV file. To convert the EDF file, which is an Emotiv output recoding file, to an

Excel CSV file, follow these steps: click Tools then click on convert EDF to CSV. A

window (see Figure 0.2) will open and the EDF can be converted to an Excel file which

can be imported into MATLAB™.

114

Figure 0.2: Convert EDF to CSV, [45]

Arduino Startup Check List

Check that the correct board was selected:

1) Tools

2) Board

3) Select the proper board for example the “Arduino Duemilanove or Nano w/

ATmega328”

a) When selecting the board, make sure that that the correct chip size is chosen. In

the above example 328 was chosen because it has an ATM 328 chip.

115

Figure 0.3: Arduino Board Selection

Make sure that the correct serial port is selected if there is a communication problem:

1) Tools

2) Board

3) Serial Port

(Note: If this doesn’t work sometimes unplugging the USB cable and moving it to a

different USB port will work.)

If the Arduino driver isn't working properly it might be because the correct driver was not

installed. To check and see, follow the instructions below:

116

1) Open Arduino environment

2) Connect Arduino USB to the computer

3) Verify that the drivers are working

a) If not open up Device Manager

i) Start

ii) Control Panel

iii) Device Manager

iv) Right click on the USB with the error

(1) Update Driver

(2) Select the driver folder in the Arduino folder

b) If driver is installed go to next step

Figure 0.4: Unknown Device Detected

4) Open a file

5) Uploaded file (use Upload in Figure 0.7 and Figure 0.6 appears if it was a successful

upload)

If you get a “COM” error try moving the Arduino USB cable to another USB

adapter/port. (See

a) Figure 0.5)

b) Make sure that you selected the correct Arduino under Tools, Board.

Figure 0.5: COM Issues

117

6) Wait until it finishes loading (As shown in Figure 0.6)

7) Open Serial Monitor (As shown in Figure 0.7)

Figure 0.6: Done Uploading

Figure 0.7: Arduino Front Conceal

8) Upload Arduino Code from Arduino 22 or other version

9) Play Processing code after Arduino 22 is uploaded.

118

sEMG Processed Signal Text File Sample

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

1

3

5

7

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

119

EEG Processed Signal Text File Sample

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

10

10

10

10

10

10

10

10

10

10

8

8

8

8

8

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

10

10

10

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

10

10

10

10

10

10

120

AMUSE MATLAB™ Code

clear; % Clears all variables

clc; % Clears the screen

input('How many data points: '); L=ans;

input('Model order p: '); p=ans;

input('How many output signals: '); no=ans;

load('matlab.mat', 'data')

y = load('matlab.mat', 'data');

p = 100;

%%%

%%%%%% STEP 1 Estimate Output Covariance Rx %%%%%%%%%%%%%%%%%

%%%

[no,nd] = size(data'); % no is the number of output(rows), nd is number (columns)

L = nd;

y = zeros(no,L); % Creates a matrix of defined demintions with random numbers

y = data';

phik = zeros(nd-p,no*p); % Creates a matrix of given size in increase speed

for i=p:(nd-1) % rows

 for j = 1:p % coloms

 col = j;

 phik(i-p+1,col*no-no+1:col*no)= y(:,i-j+1)';

 end;

end;

%%%

%%% Autocorrelation Rx = E{x(t)*x'(t)} %%%%%%%%%%%%%%%%%%%%%%

%%%

[Q1,R1] = size(y);

Rx = zeros(Q1,R1);

for j = 1: Q1

for m = 1: R1+1

 for n = 1:Q1-m+1

 Rx(Q1,m) = Rx(Q1,m)+y(Q1,n)*y(Q1,n+m-1);

 end;

end;

end

%%%

%%%%%%%% STEP 2 Compute SVD %%%%%%%%%%%%%%%%%%%%%%%

%%%

121

[U,S,V] = svd(Rx);

%%%

%%%%%%%%% STEP 3 Simga^2 %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

phik = zeros(nd-p,no*p); % Creates a matrix of given size in increase speed

for i=p:(nd-1) % rows

 for j = 1:p % coloms

 col = j;

 phik(i-p+1,col*no-no+1:col*no)= y(:,i-j+1)';

 end;

end;

R = phik'*phik;

Y = y(:,p+1:L)'; % Estimated yhat from y of p+1 columns to L (the end)

temp = phik' * (phik);

temp1 = inv(temp);

thetaBarHat = temp1 * phik'*Y; % (phik' * (phik))^(-1) * phik'*yhat

yhat2=zeros(no,L);

for k = p+1:L

 for i = 1:p

 yhat2(:,k)=yhat2(:,k)+thetaBarHat((no*(i-1))+1:no*i,:)*y(:,k-i);

 end;

end;

%%%

Epsilon=y-yhat2;

%%%

%

% Autocorrelation

%

%%%

[Q,R] = size(Epsilon);

%NEED TO FIX INDEXES

Rxx = zeros(Q,R);

for j = 1: Q % Rows for Rxx

122

for m = 1: R+1 % Columns for Rxx

 for n = 1:Q-m+1

 Rxx(j,m) = Rxx(j,m)+Epsilon(j,n)*Epsilon(j,n+m-1);

 end;

end;

end

sigma2 = Rxx(1)

%%%

%%%%%% STEP 4 Preform Orthogonalization Transformation %%%%%%%%%%%

%%%

S1 = S(S~=0)' % Removes the zeros in S and makes it a vector

m = no*p; % m is this length so the code runs but we will

% optimize m later.

for i = 1:m

 di(i) = sqrt(S1(1,i) - sigma2); % di in Algorithm

end;

Us = U(:,1:m);

T = diag(1./di)*Us';

%%%

%%%%%%% STEP 5 Estimate 4th Order Moment %%%%%%%%%%%%%%%%%%

%%%

Yt = T*y;%Epsilon;

[Q,R] = size(Yt);

Yxx = zeros(Q,R);

for j = 1: Q

 for m = 1: R+1

 for n = 1:Q-m+1

 Yxx(Q,m) = Yxx(Q,m)+Yt(Q,n)*Yt(Q,n+m-1);

 end;

 end;

end;

M = Yxx*Yxx;

for i = 1:m

 for k = 1:m

 Sum(k) = (di(i)^.2 + 1)/di(k)^2 + 2 * sigma2/di(k)^2;

 end;

 deltai(i) = ((m +4)*sigma2)/di(i)^2 + sigma2/di(i)^2*Sum(k);

end;

deltaM = diag(deltai);

123

%%%

%%%% STEP 6 Singular Valu Decomposition of M - delta M %%%%%%%%%%%%

%%%

[U2,S2,V2] = svd(M-deltaM);

%%%

%%%%%%%%%% STEP 7 Channel Estimation A0:Ahat = T'*V2 %%%%%%%%%%

%%%

Ahat = pinv(T)*V2; % Ahat is pseudoinverse of T times V2

%%%

%%%%%% STEP 8 Signal Estimation So(*):Shat(t)=V'*y(t)%%%%%%%%%%%%%

%%%

for t = m

 Shat(t) = V2(t)'*y(t)

end;

System Identification Steps

1) Open the System Identification Toolbox, see Figure 0.8

2) Import .sid file

3) Select Linear parametric model, Figure 0.9

a) Choose ARX

b) Focus: Simulation

c) Initial state: Auto

124

d) Covariance Estimate

4) Click Estimate

5) Select Model from the Model View section on the right

6) Check Model output box

7) The plot will display as in Figure 0.10

8) To extract the data points to use in MATLAB™

a) Click and drag the model to the To Workspace square shown in Figure 0.8

i) This exports the System Identification model to the workspace of

MATLAB™

b) Make sure that the input file (one used to make the model) is in the workspace

too.

c) Use the following MATLAB™ functions to extract the output

i) ys = sim(arx441,EEG4motion)

(1) ys is the output file variable name

(2) the function sim(model, U) where model is the S.I. model and U is the

input)

125

Figure 0.8: System Identification Toolbox

Figure 0.9: Linear Parametric Model Menu

126

Figure 0.10: System Identification Output

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

3

Time

Measured and simulated model output

127

MATLAB™ Figure Formatting and Creating Code

1. % This code creates figures and formats the title and axes making them readable

2. % on a computer screen. This loads in variable from simulink and plots the results

3. FuzzyOut = zeros(5000,2);

4. FuzzyOutTemp = FuzzyOut1.signals.values(56:5055,:);

5. FuzzyOut(:,1) = track2;

6. FuzzyOut(:,2) = FuzzyOutTemp(:,1);

7. ySTI = zeros(5000,2);

8. ySTI(:,1) = track2;

9. ySTI(:,2) = YS(9:5008,2);

10. figure;

11. hold on;

12. xlabel('Time/ 0.0087 sec per unit','FontSize',16,'FontName','Times')

13. ylabel('Motions','FontSize',19,'FontName','Times')

14. title('Fuzzy STI Output','FontSize',22,'FontName','Times')

15. plot(FuzzyOut(:,1),'color','k','LineWidth',2)

16. plot(FuzzyOut(:,2),'color','b')

17. legend('User Input','Fuzzy STI Output');

18. hold off;

19. figure;

20. hold on;

21. xlabel('Time/ 0.0087 sec per unit','FontSize',16,'FontName','Times')

22. ylabel('Motions','FontSize',19,'FontName','Times')

23. title('STI Output','FontSize',22,'FontName','Times')

24. plot(ySTI(:,1),'color','k','LineWidth',2)

25. plot(ySTI(:,2),'color','b')

26. legend('User Input','STI Output');

27. hold off;

128

List of Publications

[1] Alex N. Jensen, "Shield Transfer Impedance (STI) Analysis of W5G Cables," PRIME

122680.

[2] Alex N. Jensen, "Shield Transfer Impedance (STI) of Y Cable Aging Surveillance

(A/S) P106 Actuator Test Interface Cable," Northrop Grumman, pp. 1-17, 2013.

[3] John P. Rohrbaugh, Amanda Snyder, Brian Christian, Alex N. Jensen, "Request for

Hazards of Electromagnetic Radiation to Ordnance (HERO) Certification," Prime

122679, pp. 1-77, 27 March 2014.

[4] Girish Sriram, Alex N. Jensen, Steve Chiu, “Slippage Control for a Smart Prosthetic

Hand Prototype via Modified Tactile Sensory,” IEEE International Conference on

Electro/Information Technology, Submitted.

[5] Jason Parmenter, Alex N. Jensen, Steve Chiu, “Smart Irrigation Controller,” IEEE

International Conference on Electro/Information Technology, Submitted.

[6] Steve Philips, Alex N. Jensen, Steve Chiu, “Current Protection for Robotic Hand,”

IEEE International Conference on Electro/Information Technology, Submitted.

[7] Alex N. Jensen, Chandrasekhar Potluri, Amanda J. Clark, Steve Chiu, and Alex

Urfer, "Intelligent Classification of Surface Electromyographic (sEMG) Signals,"

IEEE International Conference on Electro/Information Technology (EIT), May 2013.

129

[8] Alex N. Jensen, Amanda J. Clark, Nathan T. Sparks, Steve Chiu, and Marco Schoen,

"Embedded Electroencephalogram (EEG) Processing and Control for the Actuation

of a Prosthetic Thumb Prototype," IEEE International Conference on

Electro/Information Technology, May 2013.

[9] Alex N. Jensen, Intelligent Classification of Surface Electromyographic (EMG)

Signals Based on Entropy for the Control of a Robotic Hand, 2011, Thesis.

[10] Chandrasekhar Potluri, Alex N. Jensen, Madhavi Anugolu, Girish Sriram, Shiwei

Liu, Steve Chiu, Alex Urfer, "PIC 32 Microcontroller Based sEMG Acquisition

System and Processing Using Wavelet Transforms," 2012.

[11] Alex N. Jensen, Chandrasekhar Potluri, and D. Subbaram Naidu, "Fusion of Hard

and Soft Control Strategies for a Double Inverted Pendulum," International

Conference on Mechatronics, Robotics and Manufacturing, pp. 19-23, December

2011.

[12] Chandrasekhar Potluri, Yimesker Yihun, Alex N. Jensen, Madhavi Anugolu,

Steve Chiu, Marco P. Schoen, D. S. Naidu, "Optimal Tracking of a sEMG based

Force Model for a Prosthetic Hand," IEEE Engineering in Medicine and Biology

Society, September 2011.

[13] Parmod Kumar, C. H. Chen, Anish Sebastian, Madhavi Anugolu, Chandrasekhar

Potluri, Amir Fassih, Yimesker Yihun, Alex N. Jensen, Yi Tang, Steve Chiu, Ken

Bosworth, D. S. Naidu, Marco Schoen, "Adaptive Hybrid Data Fusion Based

Identifications of Skeletal Muscle Force with ANFIS and Smoothing Spline Curve

Fitting," IEEE International Conference on Fuzzy Systems, pp. 932 - 938, June 2011.

130

[14] Chandrasekhar Potluri, Alex N. Jensen, Parmod Kumar, Jeff Molitor, Madhavi

Anugolu, Kenyon Hart, Steve Chiu, "Multi-Level Embedded Motor Control for

Prosthesis," World Comp International Conference on Embedded Systems and

Applications (ESA), pp. 37-42, 2010.

[15] Parmod Kumar, Nikesh Joshi, Alex N. Jensen, Chandrasekhar Potluri, Marco P.

Schoen, Steve C. Chiu, "Genetic Algorithm Running Time Optimization Using

OpenMP Parallel Computing," Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, vol. 2, July 2010.

	List of Figures
	List of Tables
	Key Words
	Abstract
	Chapter 1: Introduction
	1.1 Problem Statement
	1.2 Dissertation Theme
	1.3 Dissertation Objective and Outline

	Chapter 2: Literature Review
	2.1 Current Prosthetic Hands
	2.2 Prosthetic Hand Controls
	2.3 Anatomy of the Forearm and Thumb
	2.3.1 EMG
	2.3.2 EEG

	2.4 System Identification
	2.4.1 System Identification Algorithm
	2.4.2 State Space

	Chapter 3: Biological Acquisition
	3.1 Overview
	3.2 sEMG
	3.3 EEG
	3.3.1 Emotiv EPOC™

	Chapter 4: Embedded Processor
	4.1 Overview
	4.2 Arduino
	4.3 Major Arduino Functions Used and Their Descriptions

	Chapter 5: Expansion on Previous Work
	Chapter 6: Two Motor Robotic Thumb
	6.1 Proposed EEG Headset Design
	6.2 Key Command Code
	6.3 Motor Code
	6.3.1 Arduino Code

	6.4 Equipment
	6.4.1 Hardware Setup
	6.4.2 Embedded Processor
	6.4.3 EEG Headset

	6.5 Equipment Setup
	6.5.1 Embedded Processor
	6.5.2 EEG Headset

	6.6 Safety
	6.7 Software
	6.8 Experiment
	6.9 System Identification Fuzzy Controller Hybrid
	6.9.1 Experiment Setup
	6.9.2 SI of EEG Signals
	6.9.3 Fuzzy Controller Design
	6.9.4 Validations

	Chapter 7: Six DoF Prosthetic Hand Experiment and Setup
	7.1 Equipment
	7.1.1 New Equipment

	7.2 Equipment Setup
	7.3 Test Setup
	7.3.1 sEMG Thesis Entropy Method
	7.3.2 EEG Signals

	7.4 Six DoF Hand Tools and Interface Development
	7.4.1 Hand Visualization Tool for a Six DoF Hand
	7.4.2 Control of Virtual Hand
	7.4.3 sEMG Entropy Algorithm Implementation
	7.4.4 EEG Signal
	7.4.5 Text File Format

	7.5 Six DoF Hand Experiment
	7.5.1 Virtual Hand and Embedded System’s Prosthetic Hand Code
	7.5.2 Servo Motor and Embedded Platform
	7.5.3 Biological Signal Input

	7.6 Five DoF Robotic Hand Implementation

	Chapter 8: Results and Analyses
	Chapter 9: Conclusion
	Chapter 10: Future Work
	References
	Appendix
	Emotiv File Saving Process After an Experiment
	Arduino Startup Check List
	sEMG Processed Signal Text File Sample
	EEG Processed Signal Text File Sample

	AMUSE MATLAB™ Code
	System Identification Steps
	MATLAB™ Figure Formatting and Creating Code

	List of Publications
	ADPE8EE.tmp
	Signature _________________________________
	Date _____________________________________

