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Abstract 

This dissertation focuses on developing an embedded platform for controlling the 

actuation of a robotic hand and creating a virtual interface environment for it.  The work 

done in this dissertation was built on my master’s thesis and multiple publications during 

my masters and doctorate work.   

The first stage of this research focused on creating an embedded system platform that 

could use Electroencephalography (EEG) to control a two degree-of-freedom (DoF) 

thumb.  This work was successfully done using inexpensive components and an EEG 

headset for the EEG actuation.  The patients could be trained and then control the robotic 

finger in real-time.  This part of the work was so successful that it was published in an 

IEEE paper, [1]. 

Another part of this work was to further develop the embedded platform keyboard 

interface made in, [1].  This interface for that paper was able to control two finger 

motions.  This dissertation expanded that so that it could control a 6 DoF hand.  The input 

was from keyboard keys like in, [1] and added to that was a virtual hand.  The virtual 

hand mimicked what the real hand would do when a command was sent since the 

embedded system received a similar signal to the virtual hand. 

With the knowledge and background in sEMG and EEG signals from previous work, this 

dissertation developed a platform that can test these algorithms for controlling a 

prosthetic hand.  To do this the controller developed in my thesis along with conference 
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work on sEMG in [2] and [3] were used and then expanded upon.  The expanded work 

was done because the original controller identified single hand motions at a time and 

wasn’t designed to handle multiple hand motions being sent to it in one continues file.  

The EEG control method and signals from [1] were used for the EEG portion.   

This dissertation designed a platform that can receive multiple biological signals and can 

control a prosthetic hand with those signals.  This system can be controlled by a plethora 

of algorithms that use a defined output protocol.  This unique hybrid approach shows that 

the platform is very versatile and can take multiple types of inputs.  The design of the 

embedded platform will allow for expansion to enable it to easily be used in future 

research since it will be programmed using C code.  These properties will allow it to be 

an ideal test bed for testing and fine tuning control algorithms. 
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Chapter 1:  Introduction 

1.1 Problem Statement 

Currently there are more than 2 million Americans who have missing limbs, and this 

number increases by 185,000 people per year [4].  According to USA Today, due to the 

Afghanistan war, in one month 134 service members lost a limb from mines or war-

related injuries, [5].  Current research is focused on creating more intuitive prosthetics to 

address the rising need for them.  From past research, a robotic prosthetic hand should be 

autonomous, have a high level of functionality, comfort and be easy to use [6]. As part of 

being easy to use, there should be a natural way of communicating with the robotic limb 

[7]. 

Today’s robotics have advanced greatly in the last decades but these advancements have 

not carried over to prosthetic arms and hands.  These upper prosthetic limbs have not 

advanced much and are still using the simplistic hook and claw.  The principles and 

technology developed by the first commercial prosthetic hands at the Central Prosthetic 

Research Institute of the U.S.S.R in 1964, have not been improved on much since [8].  

One of the reasons for this is because of cost.  Many of the advanced robotic technologies 

are still very new and costly.  A platform needs to be made that can allow for 

development of controls and prosthetic hands more cost effectively. 

One of the major problems that keeps new prosthetics from being fully used is effective 

control of the hand.  The purpose of this dissertation is to find a cost-effective, non-
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invasive method to control a prosthetic hand.  Part of the way the cost will be kept low is 

that a virtual hand will be created that can be used to test algorithms without having the 

actual hand connect.  This will make the platform more versatile since multiple groups 

can be working in parallel with one prosthetic hand. 

Classical control methods for prosthetics have many drawbacks when it comes to 

controlling smart prosthetics, especially prosthetics with two or more degrees of freedom.  

Classical control techniques, such as electromyogram (EMG) sensors, have been used 

ever since the development of the first prosthetics and have been reliable when 

generating motor movement with electro-potentials from EMG.  However, with the 

introduction of multiple degrees of freedom for artificial hands, classical control 

techniques are insufficient to account for the added complexity. 

A problem with EMG methods is successfully implementing them to control a thumb.  

Current work with EMG has only been able to model the hand grasping and not 

performing fine control for each finger or thumb, [2].  This problem will be addressed in 

this work by investigating the issue of whether or not EEG signals can be systematically 

used to control the movement trajectory of an artificial thumb. 

This research will need to investigate using both sEMG and EEG signals to control a 

robotic hand.  Along with developing control algorithms that can identify the intent of the 

two signals, a platform will need to be created to receive the signals and then control the 

robotic hand.  This platform needs to be able to work with different programs commonly 

used to develop algorithms.  The platform needs to be versatile and be programmed using 

a common language.  This will allow for future development on this system to be done. 
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1.2 Dissertation Theme 

Research is being done to design prosthetic hands that can be controlled by sEMG or 

EEG signals.  sEMG signals occur when a motor unit receives a command from the brain 

and the motor units that activate the contraction of muscles in the arm.  These signals can 

be measured on the skin as an electric potential by electrodes.   sEMG signals are random 

in nature, and it is difficult to characterize the intent of the signal.  EEG signals are 

electro potentials generated by many neurons that are in the brain.  These signals can be 

measured by surface electrodes or implanted sensors. 

This dissertation will further develop an effective process of characterizing sEMG signals 

and use that to control advanced prosthetic hands.  Also, this work will include 

developing an effective method for acquiring EEG signals that can be used in the control 

of a robotic thumb to give the hand greater dexterity.  In this dissertation, Shannon 

entropy is used to characterize different hand gestures as sEMG signals.  The sEMG 

signals are processed with an entropy algorithm.  Different commonly performed tasks 

were used such as grasping a water bottle or grasping a key.  These tasks were 

characterized based on entropy values.  Each patient was trained for the EEG signals.  

This training process is important because each person’s EEG is unique.  After the 

training process the patient was to move the thumb in a pre-defined set of motions for a 

given length of time. 

The intent of this dissertation is to develop a platform that can take the above biological 

signals and use them to control a prosthetic hand.  A problem in developing control 
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algorithms is that they are often developed using unique, specialized software packages, 

making it difficult to interface with a prosthetic hand.  This dissertation will develop a 

platform that can utilize many different control algorithms from different software 

packages.   

To help with the algorithm development, a visualization method was created that allows 

the users to know when the different motors are being sent commands and in which 

direction.  This visualization tool will also be able to control the hand with different input 

signals from various controllers. 

 

1.3 Dissertation Objective and Outline 

The objective of this dissertation is to create a platform that can control a prosthetic hand 

with different biological signals.  These signals will be processed by different controllers 

that will be able to identify the motions that will be performed by the prosthetic hand.  

This platform will also have a visualization aspect that will allow for algorithm 

development without the need of the actual prosthetic hand. 

The organization of this thesis is as follows:  Chapter Chapter 2: , Literature Review, 

gives an overview of what sEMG and EEG signals are and how they are acquired.  It also 

covers some of the anatomy of the hand and brain to help better understand why 

electrodes were placed in the locations they were.   
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Chapter Chapter 3: , Biological Acquisition, discusses how sEMG and EEG signals are 

acquired, on which parts of the body, and the equipment used to do so.   

Chapter Chapter 4: , Embedded Processor, discusses the embedded processor that will be 

used in the experiments conducted in this dissertation.   

Chapter Chapter 5: , Expansion on Previous Work, goes in-depth over improvements to 

the algorithm that was originally created in my thesis and how it has been improved.   

Chapter Chapter 6: , Two Motor Robotic Thumb, contains the experiment which was the 

first stage of the prosthetic hand platform.  This part of the dissertation goes into how a 2 

DoF thumb is controlled with EEG signals.   

Chapter Chapter 7: , Six DoF Prosthetic Hand Experiment and Setup, is the final 

experiment that takes work done in the previous chapter as well as work from my thesis 

and fuses them into one system that controls a prosthetic hand.  It also shows the virtual 

hand that is able to mimic the movement of the actual hand whether or not it is attached 

to the system at the time.   

Chapter Chapter 8: , Results and Analyses, covers the finding from the different 

experiments performed in this work.  It also looks at how well the end prosthetic platform 

fulfills the goal of this dissertation.   

Chapter Chapter 9: , Conclusion, ends the dissertation by discussing the need for a better 

prosthetic hand platform and summarizing the steps that were used to create the platform.   
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Chapter Chapter 10: , Future Work, discusses some other questions that could be 

addressed and improvements that could be made on the system. 
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Chapter 2:  Literature Review 

Of people who have lost a limb, most turn to prosthetics to regain some mobility and 

ability to function independently.  Today’s robotics have developed greatly over the last 

decade.  CBS reported in December 2012, [9], about the recent advancement in human-

computer interface robotics.  A quadriplegic woman, with an array of electrodes 

implanted in her brain, has the ability to move a robotic arm, [9]. 

However within the world of upper limb prosthetics, there is a great potential for 

improvement.  Many current models are based on the same technology and principles as 

the first commercial prosthetic hand developed at the Central Prosthetic Research 

Institute of the U.S.S.R. in 1964, [8].  The limitations of the older, purely mechanical 

designs prevent patients from interacting with them as reported in [9].   

 

2.1 Current Prosthetic Hands 

With advancements in modern artificial hands more people are interested in new 

prosthetic hands.  This comes at a cost though and usually requires surgery.  With the 

risks of extensive surgery as was done in [9], many patients prefer other options such as 

skin surface sensor prosthetics.  This includes non-implanted electroencephalography 

(EEG) sensors and electromyogram (EMG) prosthetics which are simpler for patients to 
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control.  Due to the simplicity, low maintenance and robustness of older models, most 

patients still currently prefer the older mechanical prosthetic arms.   

A part of the newer robotic hands that separate them from the older mechanical hands is 

the opposable thumb.  The thumb allows for more mobility but can be difficult to control.  

EMG controls are simplistic and cannot handle multiple degrees of freedom well.  The 

design proposed in this paper is to interface EEG signals with an artificial thumb of a 

prosthetic hand.  Examples of the latest robotic hands that would benefit from a more 

advanced EEG controller include the Shadow Dexterous Hand™, [10], which has 20 

actuated degrees of freedom along with position, force, and sensitive touch sensors. 

Another example is the Sandia Robotic Hand, [11].  The Sandia hand is considered one 

of the most cost-effective hands built today.  The hand has 12 degrees of freedom and can 

be manipulated similar to a human hand.  The latest breakthroughs in robotics create vast 

research potential in effectively controlling these types of electromechanical hands.  

Thus, this research explores interfacing between EEG signals, a computer, and an 

embedded processor with servo motors for thumb control. 

 

2.2 Prosthetic Hand Controls 

One of the modern methods for prosthetics that has been explored is implanting 

electrodes within the skull, [12], and nerve endings.  This method has many 

disadvantages such as electrode rejection from the body, which can be life threatening.  
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This approach is still in the experimental phase.  Therefore, traditional methods are still 

being explored due to risk factors of some modern methods.  These traditional methods 

include EEG and surface EMG signal processing.  Traditional methods still face the 

trouble of signal identification of the different hand motions to the original signal. 
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2.3 Anatomy of the Forearm and Thumb 

 
Figure 2.1: Major Flexor Muscle Groups in the Forearm, [13] 

 

It is important to know that actions that require fine motor have small motor units 

compared to gross or rough motor actions.  For example, surgeons need fine motor skills 

to make precise incisions with their hands whereas running does not require precise 



11 

movements.  As a result, the motor units for people’s hands are much smaller than motor 

units in people’s legs, [2] [13]. 

The reconstruction of hand kinematics during reach to grasp movements from EEG 

signals is done through linear modeling and genetic algorithms, [14].  The genetic 

algorithm selects the EEG channels to be used as inputs to the linear decoder.  The results 

showed that the method developed is a potential design for EEG-based decoders. 

Another study utilizes the Auto Regressive (AR) model to convert the time domain 

signals to the frequency domain, [15]. Through the computation of the Fisher distance, 

the characteristics are extracted and analyzed.  The conclusion of source [15] showed that 

certain cognitive actions from EEG signals occur within the frequency bands of 14 Hz 

and 30 Hz.  Yet the results were not conclusive about identification through AR 

modeling. 

Other current research in EMG focuses on algorithms to extract the intent of the EMG 

signals.  These EMG methods isolate EMG signals on the forearm at motor units, [16] 

[17].  Others use an array of electrodes to collect the information from many different 

motor units, [2] [18].  Some shortcomings of these methods are that EMG signals are 

taken from the motor units which are created from muscles in the forearm.  These 

methods rely on most of the forearm being intact, which isn’t the case in many 

amputations.  To add further complications, most of the muscles that control the thumb 

are located in the hand and small muscles in the distal part of the forearm, away from the 

elbow, [13].  Since these muscles are in the distal part of the forearm they are very likely 
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to be damaged or lost in amputation.  This makes it impossible to get these local EMG 

signals.  As a result, alternative means are needed to control an artificial thumb. 

The structure of the thumb consists of many muscles that act similarly to a guy-wire 

structure.  The muscle creates tension from all sides of the thumb giving the thumb its 

unique function.  There are ten muscles that give the thumb its motion.  Three of these 

muscles are located in the distal forearm, four intrinsic muscles within the hand, three 

thenar muscles and the adductor pollicis, [19].  The thumb has four-degree of motion.  

Those motions include up, down, left, and right.  With these four ranges of motion, the 

function of the thumb is constructed, [20]. 

Biological signal idenification through methods used today still face signal identification 

issues.  Those issues include being able to apply the identification model to a Brain 

Computer Interface (BCI) and have the model be adaptable to both EEG and EMG.  

EMG signal models have been created to control prosthetics.  They are limited and 

cannot control the thumb effectively.  EEG provides a myriad of control possibilities.  

Currently there is no cost-effective EEG system that can be used for controlling robotic 

thumbs. 

 

2.3.1 EMG 

EMG signals are electrical impulses that contribute contraction in muscles.  EMG signals 

are present because of neuromuscular activity in the body.   The electrical impulses can 
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be measured by sensors.  There are different types of sensors that can be used to measure 

EMG signals.  There are two main groups of EMG sensors; implanted sensors that are 

expensive but provide cleaner, less noisy output signals.  The other type of sensors are 

surface sensors that are inexpensive but have more noise due to the higher impedances 

from the skin of the patient, [2]. 

Surface EMG (sEMG) signals are random in nature, amplitude modulated, and time 

dependent, [21]. This makes it difficult to classify EMG signals. Currently there is no 

prosthetic hand at an affordable cost that uses EMG, [16]. 

In this dissertation the forearm can be broken into two zones.  Figure 2.2 shows zone 1 is 

in the area closest to the wrist.  Zone 1 has the largest concentration of tendons in the 

entire arm.  These tendons connect the fingers and the muscles in the adjacent zone.  

Zone 2 in Figure 2.2 is the proximal part of the forearm; the zone closest to the elbow.  

Zone 2 is where the major muscle bellies are located and is where the main motor units 

that drive the function of the hand are located.  
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Figure 2.2: Forearm with Zone 1 and Zone 2, [2] 

 

Motor units, like the ones in zone 2, are comprised of motor neurons and all the 

connected muscle fibers.  Motor units use motor neurons to carry impulses from the 

spinal cord, or central nervous system, to the muscle fibers as shown in Figure 2.3.  These 

action potentials, or impulses, are electrical signals that travel from the spinal cord along 

the motor neurons to the muscles.  When the electrical signals from the motor neurons 

reach the muscles it innervates the muscle causing a contraction of the muscle, [22]. 
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Figure 2.3: Motor Units, [22] 

 

Figure 2.1 (a), (b) and (c) are different views that show the different layers of the flexor 

muscles of the forearm.  The flexor muscle groups contain the majority of the motor units 

that initiate the muscle contraction.  Each layer shown are the muscles used to control the 

hand.  These muscles in Figure 2.1 contain motor units which produce a small voltage 

that can be measured as EMG signals with electrodes. Zone 1 does not provide 

significant EMG signals because the movement of tendons does not produce significant 

sEMG signals, [22]. 
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2.3.2 EEG 

EEG signals are electro potentials generated by the array of neurons within the brain and 

can be measured as well.  EEG waves have distinct patterns divided into specific 

frequency ranges.  These frequency ranges can be seen in Table 2.1 which contains the 

four commonly seen frequency ranges when recording EEG signals.  These ranges can be 

recorded and manipulated through signal processing algorithms. 

 

Table 2.1:  EEG Waves and Frequencies, [23] 

Signal Classification Frequency (Hz) 

Delta 0.5 – 4 

Theta 4 – 8 

Alpha 8 – 13 

Beta 13 – 30 
 

A main handbook on EEG is [24]. This handbook points out the four main items to 

consider when working with brain recording.   

1. Electrodes: They are usually made of silver or gold because they are good  

conductors.  Gold is ideal because it doesn’t tarnish but it is more 

expensive. 

2. Amplification:  The amplifier needs to be able to operate in the microvolt  

    range. 
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3. Filters:  Must be able to filter on as time rhythm which allows it to remove  

artifact noise such a blinking or 60 Hz noise from surrounding 

electronics. 

4. Recording Unit: The experiments need to be able to be recorded to allow for  

   data processing. 

As with sEMG, EEG electrode placement is important.  The system that many 

laboratories throughout the world use is the 10-20 International System, which stands for 

the placement of electrodes evenly spaced from each other by 10 or 20 percent of 

measurements made based on the patient’s skull, [18].  A pictorial representation is 

shown in Figure 2.4, [20]. 
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Figure 2.4: Electrode placement: A) Side profile B) Top profile C) EEG electrode placement map, [25] 

 

Another important point is a “ground” or reference electrode.  The “ground” electrode is 

often placed in the middle of the forehead.  It is also important to prepare the patient 

before electrodes are placed to reduce noise of the acquired signals.  This is done by 
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cleaning the location of the sensors with acetone.  Electrode paste is often used to hold 

the electrodes in place and increase conductivity between the scalp and electrodes, [24] 

[20]. 

 

2.4 System Identification 

System Identification (SI) is a method that is used to characterize a given physical 

system, such as a car manufacturing process to biological organisms.  SI is useful when 

little information is known about the entire system.  This can range from knowing the 

input and output to the system to only knowing the output, which is measured or 

observed.  It can be used to model the system and can often be accurately simulated.  

There are two main types of system identification models: the black-box and gray-box.  

The black-box model is the most common model and is used when there is no prior 

information known about the system.  It can include some of the following models: 

Autoregressive (AR), Autoregressive-Moving Average (ARMA), Moving Average 

(MA), and polynomials, [26].  The disadvantage is that little physical information can be 

extracted from the black-box model.  The gray-box model uses a black-box structure, but 

allows for limited physical information to be extracted.  

2.4.1 System Identification Algorithm 

Assume that there is a linear time-invariant system, then: 
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                       ̇          

           

(1)     

where  ̇  is a time derivative, A, B, C, and D are matrices,    is the state vector,    is the 

input and Yt is the output.  The general state solution of Equation (1) is given by 

           ( )      ( )  ∫   (   )  ( )  
 

 
 (2)     

The discrete-time model of Equation (1) at a sampling rate of    is given by 

 (   )   ̃ ( )   ̃ ( ) 

 ( )    ( )    ( ) 

(3)     

where  ̃      ,  ̃  ∫   (    )   
  

 
, and k is the discrete time index.  The output of 

Equation (3) is given as 

 ( )  ∑  (   )

 

   

 ( ) 

(4)     

where  ( ) are the Markov parameters, shown below as the input and output parameters.  

The Markov parameters in Equation (4) are given in terms of the state space model 

matrices as: 
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 ( )     ( )    ̃    ̃  or      [      ̃    ̃ ̃    ̃  ̃    ̃    ̃] (5)     

with k > 0.  In this work for SI a Hankel matrix will be used because it simplifies later 

calculation since a fraction of the matrix is need from its singular value decomposition. It 

will be assumed that  ( )       is a pulse response.  Using a discrete time shift of 

the Hankel matrix defined as 

 (   )  [

 (   )  (   )

 (   )  (   )

 
 

 (   )

 (     )
    

 (   )  (     )   (       )

] 

(6)     

where          .  The length of the matrix is defined as l and the width is defined as 

w.  Using the impulse response, Markov parameters can be used to construct          

       and this can be done without knowledge of the system matrices            .  

Let m be the order of the system being identified; choose             to ensure 

that the matrix  (   ) is of rank m.  If  ( )       is assumed to be the singular 

value decomposition of the Hankel matrix, then the matrices of the minimal state-space 

realization are as follows: 

    
 

    ( )   
 

 ,    
 

   [ 

  
 
 
 

 ],            
 

 ,     , 

(7)     

where i is the number of inputs and q is the number of outputs, [27,28,29,30,31]. 
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2.4.2 State Space 

Given a physical system with an n
th

-order ordinary differential equations (ODE) and that 

has consistent coefficients in continuous-time (   ), it can be expressed as, 

  

   
       

  

   
      

  

   
           

(8)     

 

where    is the input or excitation function.  A common method for solving ODEs is to 

rewrite the system into an equivalent set of n first-order differential equations with vector 

components that correspond to the differentials defined as,    
    

  
, for           

  then    can be written as    [   
    

  
 

      

  
]
 

. 

Taking the derivative of    for each component, we obtain 

 ̇  
   

  
   , (9)     

 ̇  
    

  
      

    

     
       

 

  
          . (10)     

The equations then can be written into a vector-matrix form to obtain the following 

matrices, 
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(11)     

And can be expressed in the compact form 

 ̇          (12)     

where                                    .  A is the state matrix, and B is 

the input matrix.  

The output vector, or the measurement vector, can be defined in a similar compact form 

as: 

           (13)     

where         is the output vector. The corresponding vectors,             

    , [32,33], are the input matrix and the direct transition matrix, respectively.  Thus, 

Equation (12) and (13) are as shown in Equation (1), [27,28,29,30,31].   
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Chapter 3:  Biological Acquisition 

3.1 Overview 

An objective of this work is to find an inexpensive method of controlling a prosthetic 

hand.  One method this work will explore is an inexpensive electroencephalography 

(EEG) system to control a robotic thumb.  The method used is to train a person to execute 

different movements with his mind by thinking of an action.  After a number of trainings, 

which vary depending on the person, the patient will become proficient at the actions.  At 

this stage software will be used to send signals to an embedded processor letting it know 

that the patient has performed a certain action.  The embedded processor will interpret the 

message and then activate a motor based on what action signals were sent.  The objective 

of this research is to control a prosthetic thumb.  This control can be done with different 

types of signals, and this dissertation will be considering EEG or EMG signals.   

 

3.2 sEMG 

sEMG signals have the largest amplitude over motors points.  But it is important to note 

that motor units are not isolated in one specific area.  The units are spread throughout the 

muscle so they are not localized.  Motor points are where the nerve bundle enters the 

muscle bellies.  Motor points can be activated by using external stimulation, but these 

usually only causes weak contractions.  Past experiments [16] and [34] used a muscle 
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stimulator, the Rich-Mar HV 1000, to find motor points and then the sEMG signals were 

measured over these areas.  Finding the best spot for muscle contraction is difficult to 

find and differs by person.  Muscle stimulation can generally be used to find motor points 

that cause fingers contraction; unfortunately it is often painful and time consuming.  

Motor point location varies for many reasons, such as the subject’s muscle mass, sex and 

other anatomical factors.   

The shortcoming of this method is: How would one find the motor points on an 

amputated limb?  The only real way to tell if you activate a motor point is by watching 

the muscle twitch because they no longer have a hand.  Also, depending on the severity 

of the amputation most of zone 1 and 2 could be lost or damaged if the amputation 

occurred because of an accident instead of being performed by a surgeon. 

To overcome the problem of finding motor points, this dissertation uses electrodes placed 

perpendicular to the muscles originating from the medial epicondyles of the forearm as 

shown in Figure 2.1 (a).  In past experiments it was verified that zone 1 didn’t contain 

very meaningful sEMG information [2].  Zone 2 was over the general muscle bellies of 

the forearm.  Therefore, the anterior compartment of the forearm was used since it 

contains the flexor muscle groups, which is where many motor points are located.  Three 

electrode pairs were placed over the muscles in zone 2.  The sEMG signals were 

measured with these electrode pairs during the experiments.  Surface electrodes are non-

invasive because they do not have to be implanted in the patient to measure the sEMG 

signals, [22]. 
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The sEMG data acquisition device that was used to collect data from the three electrode 

pairs was the NORAXON MyoSystem 2000.  The data was acquired at a 1,000 Hz 

frequency (or 1,000 samples a second).  The NORAXON measures the potential 

difference between the two sensors as positive for red and negative for black with 

reference to ground.  The ground, or reference, was placed on the patients elbow.  The 

elbow was used since there are hardly any motor units in that region because of the elbow 

bones, which provides an excellent reference for the circuit, [2].   

 

3.3 EEG 

3.3.1 Emotiv EPOC™ 

The Emotiv EPOC™ is an inexpensive EEG device. The headgear with the research 

software can be purchased for about $700. The headgear has 14 electrodes with 

ground/reference nodes.  The sensors are in an array on AF3, F7, F3, FC5, T7, P7, 01, 02, 

P8, T8, FC6, F4, F8, AF4, and 2 ground nodes can be seen in Figure 3.1, [35].  This 

electrode placement is not as complicated as the 10-20 International System shown in 

Figure 2.4.  This is one of the ways that cost is reduced from many of the larger, more 

expensive, machines that have to handle many more electrodes.  Raw EEG signals can be 

acquired with the research edition of the software. The raw data can be taken and saved 

into a Microsoft Excel file which can be imported by other software to do data analysis, 

such as MATLAB™, [36] [37].  
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Figure 3.1: Emotiv sensor array, [37] 

 

The 16 points in Figure 3.1 are where the 14 electrode placements are on the headset.  

The headset can be seen in Figure 3.2 with the electrodes.  The electrodes have saline 

solution applied to them to improve conductivity. The device transmits wirelessly to a 

computer via a wireless transmitter/receiver (dongle).  The EEG signals are displayed 

graphically on the monitor with help of the software called TestBench™.  The Emotiv 

has a sampling rate of 128 samples per second, [35].   
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Figure 3.2: Emotiv cover display, [37] 

 

The system allows for many different actions which associate to a thought to be trained.  

The person trains an action by assonating a thought with.  The more actions that are 

trained, the more difficult it becomes to execute the desired motion.  Two actions are 

easy to control but the difficulty increases greatly beyond three motions.  The headset 

will get confused at the action being sent and may do the wrong action.  To help with this 

additional training needs to be done. 

Once the patient has been trained, an experiment will be performed and the data can then 

be saved.  For instruction on how to save experiment data, see Appendix of this 

dissertation: Emotiv File Saving Process After an Experiment. 
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Chapter 4:  Embedded Processor 

4.1 Overview 

The “brains” of the prosthetic hand is the embedded system.  It is used to control the 

motors based on the biological signals, or key commands, from the computer.  The 

embedded system will control the motor position and the speed of the motors.  The hand 

is driven by servo motors.  Servo motors are used since they have a high level of position 

accuracy.  This accuracy will allow the embedded platform, the Arduino Uno or Arduino 

Duemilanove processor, to control the hand.   

 

4.2 Arduino 

Arduino is an embedded processor that is reprogrammable.  The startup package is 

inexpensive for prototyping purposes, and the chip's programming language is 

straightforward.  The Arduino can be programmed using a standard USB cable and a 

computer.  When reprogramming is required, the Arduino does not have to be 

disconnected from the circuit. It simply needs to have the USB cable connected to a 

computer.  For this work the USB cable will not be disconnected so programming can 

take place whenever it is needed.  This adds flexibility.  The USB cable also allows for 

serial communication.  The serial communication allows the user to type numbers and 

letters and sends them to the Arduino. The Arduino has a 16 MHz clock speed. 
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Figure 4.1: Arduino Uno Board, [38] 

 

The Arduino main micro-controller is an ATmega 328 that can run off a voltage ranging 

from 7 – 12 V.  It has 14 digital input/output (I/O) pins. This version of Arduino has 6 

digital pins that allow pulse width modulation (PWM).  All digital pins can supply 40 

mA.  It has 6 analog input pins and can supply 50 mA.  It has 32 KB of flash memory and 

0.5 KB are used by the processor’s bootloader.  It has 2 KB of SRAM.  It also has 1 KB 

of EEPROM memory.  It has a 5 V supply pin that is an output from a 5 V voltage 

regulator on the board.  It has a 3.3V pin or the 3V3 which is an output from a 3.3 V 

voltage regulator which can supply a maximum of 50 mA.  The total current that the 

Arduino can output on all the pins at one time is 200 mA.  The physical dimensions of 

the Arduino are 2.7 inches long and 2.1 inches wide.  It has four screw holes for 

mounting purposes. 
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One function of the Arduino is Analog Write, which accepts a value from 0 to 255.  This 

function is used for PWM signals.  Analog Read will receive an input voltage of 0 to 5 V 

and converts the voltage to a decimal value of 0 to 1023.  These pins are often used for 

sensors to give feed back to the system.  Since servo motors are used, the servo motors 

will not require feedback, [38]. 

 

4.3 Major Arduino Functions Used and Their Descriptions 

analogRead(pin).  This function works for the analog pins on the board.  The pins that 

this function works for are ANALOG IN pin 0 to pin 5.  It reads an analog value that is 

applied to the pin.  The pin is determined by which value is put into the function. This 

function takes a voltage from 0 to 5 V and converts the voltage to a decimal value of 0 to 

1023. 

analogWrite(pin, value).  This function is used to right to an analog signal to an output 

pin.  The analog signal is specifically a PWM signal. The function is passed a pin value, 

which is the pin that will be used to output the signal on. The value passed to it 

determines the duty cycle of the PWM signal.  The value is 0 to 255 which corresponds 

to 0 to 100% duty cycle.  The pins that are capable of creating a PWM are 3, 5, 6, 9, 10, 

and 11, [38].   

The Arduino main processor is an ATMEGA 328 AVR microprocessor.  It has a USB 

circuit that allows it to communicate with the terminal without using a UART, which is 
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typically needed for a microprocessor if the user wants to be able to receive different 

information from the embedded platform.  It also has various circuit protections, 

generally by means of diodes. 
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Chapter 5:  Expansion on Previous Work 

The author’s previous work is provided in [2] and discusses using EMG signals to control 

the prosthetic hand and involved performing experiments using EMG sensors.  The data 

is collected and stored in large text files with many columns that are not required for the 

end results.  The important information is taken from the text files and imported to 

MATLAB™.  Then MATLAB™ is used to calculate the entropy of the signals whose 

results can be used to decide what hand motion is being performed.   

While doing the work on EEG experiments, I noticed that I was able to optimize the work 

I did in my thesis.  There are a couple of ways that data can be imported. Commonly it is 

saved in a Excel file but can also be saved as a text file.  The needed steps to import the 

data into MATLAB™ to allow the data to be processed with different algorithms are as 

follows: 

 

1. Format all the files so the data are uniform 

2. Import the file into MATLAB™  

3. Assign the file to a variable to allow it to be used in the code 

4. Repeat until all the files are imported into MATLAB™ 

 

This process was done manually before I began my thesis.  This was a time consuming, 

tedious and often allowed for error.  Each file was opened and rows and columns were 
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deleted such as the titles and other parts of the file that MATLAB™ could not handle 

properly.  In my thesis I took advantage of functions within MATLAB™ to import the 

data.  It required many loops and entering in all the names of the files but it was only 

needed to be done once and then it could be run repeatedly.  If new experiments were 

performed, the data could easily and efficiently be imported.  The code was long though 

and required time to initially set up.  Sample code was as follows, [2] [3]. 

 

 

for i = 0:163 1 
  2 
    if i == 0 3 
        load a082A1.ASC; % Load the raw sEMG and force data. 4 
        5 
        z2_1r = a082A1(:,7);  % Column 7 is Z2-1 Rectified. 6 
        z2_2r = a082A1(:,8);  % Column 8 is Z2-2 Rectified. 7 
        z2_3r = a082A1(:,9);  % Column 9 is Z2-3 Rectified. 8 
        z2_1  = a082A1(:,11); % Column 11 is Z2-1 Unfiltered. 9 
        z2_2  = a082A1(:,12); % Column 12 is Z2-2 Unfiltered. 10 
        z2_3  = a082A1(:,13); % Column 13 is Z2-3 Unfiltered. 11 
  12 
    elseif i == 1  13 
  14 
        load a082A2.ASC; % Load the raw sEMG and force data. 15 
         16 
        z2_1r = a082A2(:,7);  % Column 7 is Z2-1 Rectified. 17 
        z2_2r = a082A2(:,8);  % Column 8 is Z2-2 Rectified. 18 
        z2_3r = a082A2(:,9);  % Column 9 is Z2-3 Rectified. 19 
        z2_1  = a082A2(:,11); % Column 11 is Z2-1 Unfiltered. 20 
        z2_2  = a082A2(:,12); % Column 12 is Z2-2 Unfiltered. 21 
        z2_3  = a082A2(:,13); % Column 13 is Z2-3 Unfiltered. 22 

 

       . 

       . 

       . 

 

    elseif i == 163 1826 
  1827 
        load a082D41.ASC; % Load the raw sEMG and force data. 1828 
         1829 
        z2_1r = a082D41(:,7);  % Column 7 is Z2-1 Rectified. 1830 
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        z2_2r = a082D41(:,8);  % Column 8 is Z2-2 Rectified. 1831 
        z2_3r = a082D41(:,9);  % Column 9 is Z2-3 Rectified. 1832 
        z2_1  = a082D41(:,11); % Column 11 is Z2-1 Unfiltered. 1833 
        z2_2  = a082D41(:,12); % Column 12 is Z2-2 Unfiltered. 1834 
        z2_3  = a082D41(:,13); % Column 13 is Z2-3 Unfiltered. 1835 
  1836 
    end 1837 
 1838 
end 1839 

 

The code shown above had some limitations.  This was time consuming to program the 

1800 plus lines and changes the file name for each elseif statement but it was much faster 

than doing it manually.  Another shortcoming was the results had to be stored in a matrix 

and then the next data was loaded in.  If previous data need to be looked at again, then 

that data had to reloaded.  It would be better if each set of data had its own unique name.  

Another shortcoming was the data was in text files which made it necessary to create a 

variable for each column. 

In the work done in this dissertation further optimization was done to allow for more 

compact code to be created to accomplish the same task.  Pre-formatting the data was 

eliminated which reduced the overall project time dramatically.  This reduced time 

because with the Excel import function specific rows and columns could be selected.  For 

example the title rows and columns could be omitted. This was not commonly done prior 

to this work. 

The function xlsread was used to read in the Excel file of the given rows and columns 

and store it to a variable.  The file naming convention that this algorithm is based on is 

UserNameorPatient Direction NumberofExperiment for example: UserA left1.  Further 
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reduction was done with the sprintf function.  The sprintf() function allows for a 

statement to be printed with parts that will change, for example, depending on an index 

from the different for loops. %s are used for strings, %d are used for decimal numbers.  

The sprintf function needs actual letters so a char command changes the 'word' to word.  

The first %s is the patient’s name with the index p, being the second %s.  Conditions 

were made based on the progression in the for loop to allow for unique variables to be 

made for each file.  The first iteration of the program was created as: 

for a = 1:3 1 
    for i = 1:3 2 
        if a == 1 && i == 1 3 
            in1 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 4 
        elseif a == 1 && i == 2 5 
            in2 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 6 
        elseif a == 1 && i == 3 7 
            in3 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 8 
        elseif a == 2 && i == 1 9 
            in4 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 10 
        elseif a == 2 && i == 2 11 
            in5 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 12 
        elseif a == 2 && i == 3 13 
            in6 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 14 
        elseif a == 3 && i == 1 15 
            in7 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 16 
        elseif a == 3 && i == 2 17 
            in8 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 18 
        elseif a == 3 && i == 3 19 
            in9 = xlsread(sprintf(UserA'%s %d.csv',char(direction(a)),i),'C2:P99999'); 20 
        end 21 
    end 22 
end 23 
 24 
for c = 1:3 25 
    for i = 1:3 26 
        if c == 1 && i == 1 27 
            in10 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 28 
        elseif c == 1 && i == 2 29 
            in11 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 30 
        elseif c == 1 && i == 3 31 
            in12 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 32 
        elseif c == 2 && i == 1 33 
            in13 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 34 
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        elseif c == 2 && i == 2 35 
            in14 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 36 
        elseif c == 2 && i == 3 37 
            in15 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 38 
        elseif c == 3 && i == 1 39 
            in16 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 40 
        elseif c == 3 && i == 2 41 
            in17 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 42 
        elseif c == 3 && i == 3 43 
            in18 = xlsread(sprintf('UserB'%s %d.csv',char(direction(c)),i),'C2:P99999'); 44 
        end 45 
    end 46 
end 47 

 

Notice that the above code was only for two patients and the third patient would just 

follow suit.  The improved method shown before this was better but it was still very 

tedious to write all the elseif statements and fill out the conditions of a and i or c and i.  

The updated code did reduce the requirement for preformatting the files which was a 

major part for the creation of the original code.  Further work was required to make the 

code more condensed. 

With further refinement the code length was reduced even more.  A data object was used 

to allow for different variable names to be created within the for loop.  Int2string is a 

function that changes an integer into a string.  See line 5 of the code ([‘name of the file’ 

int2str(index of the loops to count up from 1 until the end)]).  A new matrix for the 

patient was created with the name EEGsig# where # is a number from 1 to the number of 

experiments.  The xlsread(sprintf('prints the string name of the file%s %s 

%d.csv',char(patient(p)),char(direction(d)),n),'C2:P99999').  With these modifications the 

loop is about 50 to 60 times smaller than the original method used in [2] which was a 

significant improvement on the manual method used prior to this work. 



38 

 
patient = {UserA';'UserB';'UserC'}; % Assigns the matrix patients with strings values 1 
direction = {'left';'right';'neutral'}; % Assigns the matrix direction with strings values 2 
for p = 1:3 3 
    for d = 1:3 4 
        for n = 1:3 5 
            data.(['EEGsig' int2str(9*(p-1) + 3*(d-1) + n)]) = xlsread(sprintf('%s %s 6 
%d.csv',char(patient(p)),char(direction(d)),n),'C2:P99999');  7 
        end 8 
    end 9 
end 10 
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Chapter 6:  Two Motor Robotic Thumb 

6.1 Proposed EEG Headset Design 

This work explores using a cost effective EEG system to control a robotic thumb.  The 

process for this method begins by training a person on executing different movements 

with their mind by thinking of an action.  After a number of trainings, which varies 

depending on the person, the patient becomes proficient at the actions.  At this stage, 

software is used to send signals to an embedded processor letting it know that the patient 

is thinking of a certain action.  The embedded processor interprets the message and then 

activates a motor based on what EEG signal was sent. 

Figure 6.1 shows the block diagram of how the system is designed.  The EEG headset 

connects to a computer with a keyboard.  Both the EEG headset and the keyboard send 

information to the computer.  The computer has a controller on it to accept and analyze 

the EEG data.  The commands are interpreted as a key press from the software or the 

actual keyboard.  This is read by another part of the controller, and a command is sent to 

the embedded processor.  The embedded processor decodes the command and activates 

one of the motors clockwise or counterclockwise.  The block diagram of the thumb 

control system is shown in Figure 6.1.  This is the overview of the setup of the system 

and how the components will communicate with each other. 
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Figure 6.1: Block Diagram for two Motor Setup 

 

The embedded processor in Figure 6.1 controls the thumb motors based on commands 

sent by the computer.  An algorithm was designed to receive key strokes from the 

keyboard and translate those key signal into motor movement.  The pseudo code is split 

into two different algorithms.  The key code receives a command from the keyboard, 

deciphers the time the key has been held, and outputs which motor should be moved and 
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by how much.  The motor code is set up to run two servo motors; as a result a pulse width 

modulated (PWM) signal will be used.  The pseudo code for the embedded processor is 

as follows: 

 

6.2 Key Command Code 

1.draw() 

2.BEGIN 

3.  SWITCH key 

4.  BEGIN 

5.    CASE a 

6.       SET Servo1TimeA = Servo1TimeA + 11 

7.       SET Servo1TimeB = Servo1TimeB - 2 

8.     CASE s 

9.        SET Servo1TimeB = Servo1TimeB + 11 

10.      SET Servo1TimeA = Servo1TimeA - 2  

11.    CASE z 

12.      SET Servo2TimeA = Servo2TimeA + 11 

13.      SET Servo2TimeB = Servo2TimeB - 2  

14.    CASE x 

15.      SET Servo2TimeB = Servo2TimeB + 11 

16.      SET Servo2TimeA = Servo2TimeA - 2  

17.    DEFAULT 

18.      SET Servo1TimeA = Servo1TimeA - 3 

19.      SET Servo1TimeB = Servo1TimeB - 3 

20.      SET Servo2TimeA = Servo2TimeA - 3 

21.      SET Servo2TimeB = Servo2TimeB - 3 

22.  END CASE 

23.  SET Servo1TimeA = adjust(Servo1TimeA) 

24.  SET Servo1TimeB = adjust(Servo1TimeB) 

25.  SET Servo2TimeA = adjust(Servo2TimeA) 

26.  SET Servo2TimeB = adjust(Servo2TimeB) 

27.  SET diffA = Servo1TimeA - Servo1TimeB 

28.  SET diffB = Servo2TimeA - Servo2TimeB 

29.  IF diffA > 0  

30.    FOR i = 0 to diffA incremented by ones 

31.      IF (i % 3) is 0 

32.        send a 1 to motor code  
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33.  ESLE IF diffA < 0  

34.    FOR int i = 0 to diffA decremented by ones 

35.      IF (i % 3) is 0 

36.        send a 2 to motor code 

37.  IF diffB > 0  

38.     FOR i = 0 to diffB incremented by ones 

39.      IF (i % 3) is 0  

40.         send a 3 to motor code 

41.  ELSE IF diffB < 0  

42.    FOR i = 0 to diffB decremented by ones 

43.       IF (i % 3) is 0 

44.        send a 4 to motor code 

45.END 

46.FUNCTION 

47.adjust(num) 

48.BEGIN 

49.  IF num < minimum_pulse_time 

50.    SET num = minimum_pulse_time      

51.  IF num > maximum_pulse_time 

52.    SET num = maximum_pulse_time 

53.  RETURN num 

54.END 

 

6.3 Motor Code 

INITIALIZE pulseA and pulseB to midpoint of the servo motors 

 

1.loop() 

2.  IF the user has entered data 

3.  BEGIN 

4.    SET incomingByte = number from processing code 

5.    IF incomingByte is 1 

6.      IF pulseA < maxpulseA 

7.        SET pulseA = pulseA + 1 

8.    IF incomingByte is 2 

9.      IF pulseA > minpulseA  

10.        SET pulseA = pulseA - 1 

11.   IF incomingByte is 3 

12.      IF pulseB < maxpulseB 

13.        SET pulseB = pulseB + 1 

14.    IF incomingByte is 4 

15.      IF pulseB > minpulseB 
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16.        SET pulseB = pulseB - 1 

17.    IF (current_time – lastpulseA >= refreshTime) and  

             (incomingByte is 1 or 2) 

18.    BEGIN   

19.      turn the first servo motor on for the length of pulseA 

20.      SET lastpulseA = current_time  

21.    END 

22.    IF (current_time - lastpulseB >= refreshTime) and  

             (incomingByte is 3 or 4) 

23.    BEGIN 

24.      turn the second servo motor on for the length of pulseB 

25.      SET lastpulseB = current_time 

26.   END 

27.END 

 

(Note: Servo motors work by PWM signals, so the position is set by the length of the 

pulse.) 

 

6.3.1 Arduino Code 

The code written from the pseudo code shown in Section 6.3 was developed into working 

code.  The full code is shown in Appendix of this dissertation under Error! Reference 

ource not found. and Error! Reference source not found. .  Comments are provided in 

the code to explain how the code works and specific functions that were used. 
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6.4 Equipment 

6.4.1 Hardware Setup 

The servo motors are connected to ground, + 5 V, and an output pin from the embedded 

processor with a resistor in series to limit maximum current flow to and from the 

processor.  The size of the resistor varies on the maximum output of the embedded 

processor and for this application 200 Ω is adequate. 

 

6.4.2 Embedded Processor 

The Arduino main micro-controller has digital and analog input/output pins.  These pins 

can supply 40 mA and 50 mA respectively.  The processor can be programmed using a 

standard USB cable and a computer.  The embedded system can also communicate 

serially with the computer via the USB cable it is programmed with.  The processor does 

not have to be released or burned to the chip when running experiments. 

Two development environments were used.  One was the Arduino programmer and the 

other is called Processing [39] [40].  Arduino is a programming environment that is 

generally used to program the Arduino.  Processing is another programmer that can be 

used with the Arduino if it is used in conjunction with the Arduino programmer. 
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6.4.3 EEG Headset 

The thumb is driven by servo motors.  Servo motors were used since they have a high 

level of position accuracy.  This accuracy allows the embedded platform used in this 

research to control the thumb more reliably.  The patient will have the Emotiv on them 

and will be trained on how to move the motors which will move the thumb. 

 

6.5 Equipment Setup  

6.5.1 Embedded Processor 

To prepare the embedded processor, the motor code is loaded on the chip first using the 

Arduino programmer.  This code sets up the output pins and other configurations that are 

required to work the key command code.  After the motor code is loaded, the key 

command code is loaded by using Processing.  The interface window then opens as 

shown in Figure 6.2. 
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Figure 6.2: Arduino Processing Button [1]. 

 

The Arduino Processing user interface is used to train the patient before connecting the 

motors to the system because the button colors change when a signal is sent to a motor if 

it is attached.  The button on the right is the default color and the button on the left is an 

activated button.  A red button is used when the second motor is activated.  The interface 

is also used when setting up the motors to ensure they are working properly without 

having to have a patient attempting to move the motors.   

The system setup was based on the initial design in Figure 6.1 and was modified using 

the chosen hardware.  A diagram of the final setup is shown in Figure 6.3.  The Emotiv 

has one-way communication with the computer.  A USB cable connects the computer to 

the Arduino for programming and for communication.  The computer sends and receives 

commands from the Arduino based on the controller on the computer.  The Arduino 

sends the desired position to the servo motors.  The experiment setup consists of a 

computer that has the Emotiv for the EEG headset and the Arduino as the embedded 

processor.  Two servo motors were connected to the Arduino. 
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Figure 6.3: Flow Diagram of Two Motor System [1]. 
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6.5.2 EEG Headset 

1. Ensure that the headset is fully charged.  When the headset battery level gets low, it 

will randomly lose connection.   

2. Wet all the electrodes with one or two drops of saline solution.   

3. Once wet, attach each electrode into the Emotiv headgear.   

4. Plug the wireless USB dongle into the computer to allow it to connect to the 

Emotiv.   

5. Turn on the headgear and open the Emotiv Control panel program. 

6. The system is now ready for experiments. 

 

 

6.6 Safety 

The only safety precaution taken is between the embedded processor and the motors.  

The embedded processor has a resistor between the output pin and the servo motors.  This 

prevents the processor from getting damaged if there is a fault in a servo motor that 

causes a short circuit.  The Emotiv has its own protection to prevent harmful signals 

coming from the computer. 
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6.7 Software 

The code written from the pseudo code shown in Section 6.3 was developed into working 

code.  The full code is shown in [1].  Comments are provided in the code to explain how 

the code works and specific functions that were used. 

 

6.8 Experiment 

To begin the experiment, the patient puts the EEG headset on correctly and establishes 

connection to the computer. All subjects volunteered for these experiments.  The next 

step is to open the Control Panel, shown in Figure 6.4. The Control Panel is used to train 

the patient.  Once the program is open, a user is selected or a new user is input.  With a 

new user, it is important to train the headgear to the person because each person’s EEG 

signals are unique.  To do this, the Expressiv Suite tab is selected as seen in Figure 6.4 on 

the right.  On the left there are two tabs.  The training tab should be selected which allows 

the user to train for different face movements as seen in Figure 6.4.  Training can be done 

for each action along with a neutral training.  The Control Panel-Expressiv Suite tab 

allows the user to train and adjust the sensitivity of the different facial motions.  The 

number of trainings will depend on the patient’s unique EEG signals and ability to 

concentrate, [1] [36]. 
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Figure 6.4: SDK Control Panel, [36]. 

 

Now that the user has been trained for facial expressions, action training is required.  

Specific actions can be trained to move a cube on the Control Panel-Cognitiv Suite Tab.  

The first training required is two neutral trainings.  Neutral training is when a subject is 

relaxed and does not think of a given motion.  The first training is a 10 second neutral 

training and the second training is for 30 seconds.   

With the Arduino ready to acquire key signals from the keyboard, the next step is to use 

the EmoKey to bind actions to certain keys as shown in Figure 6.5.  The different rules 

that can be set have certain key(s) associated with them.  The Trigger Condition is where 
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the different actions that were trained can represent a certain key on the keyboard shown 

in Figure 6.5.  In this figure we can see that for Rule 4 a teeth clench action was selected.  

The trigger values were set for greater than a 0.2 value.  The trigger value can be raised to 

lower sensitivity to this action, or reduced to increase sensitivity for an action.  This helps 

to fine tune the different motions depending on whether they are easy to identify or are 

very difficult to identify.  Another option that can be changed in the software shown in 

Figure 6.5 is how long the software presses the key.  EmoKey key binding is used to set 

the key that will be pressed based on a given motion from the Control Panel.  Different 

applications can be targeted also, [1] [36]. 

 

 
Figure 6.5: Emotiv Key Binding Interface, [36]. 
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Figure 6.2 depicts the user interface for the embedded processor that is run using 

Processing code.  This interface allows signals to be sent to the embedded system using 

the keyboard.  The gray buttons on the left and right change colors when a different key 

is pressed.  Along with the color of the button changing, a signal is sent to the chip 

indicating which key was pressed and for how long.  In this system, to make the motors 

move for a longer period, repeated signals or motions can be sent from the user, and the 

servo motors will move further.  Sending the signals to the motor at closer intervals 

increases the speed of the motor. 

With the patients trained, they can now experiment in moving the motors.  The patients 

were tasked to move the motors in different orders, different rates, alternating the motors 

repeatedly.  The subjects were able to reliably move the motors in all the different tasks.  

Fatigue did set in with the patients at varying intervals, typically 15 to 45 minutes, 

making it more difficult to control the motors; but they were still able to execute the tasks 

remarkably well even under these conditions. 

Figure 6.6 is a picture of the setup of the embedded system with the servo motors 

connected to it.  A USB cable is connected to the Arduino for programming and for 

communications.  The servo motors can be connected directly to the embedded platform 

because they have their own internal controls to protect the circuit.  A 100-200 ohm 

resistor could be placed in the circuit between the Arduino and the servo motors as 

protection if the servo motor shorted to ground.  For larger motors an external 5 V power 

supply should be used. 
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Figure 6.6: Arduino Servo Motor Setup 

 

6.9 System Identification Fuzzy Controller Hybrid 

6.9.1 Experiment Setup 

There are various methods that have been used to study EEG data.  SI has been used in 

the past to identify different types of systems and would be a good option to study EEG 

signals.  Fuzzy logic has also been successfully used to identify signals.  A hybrid SI 

fuzzy logic controller may prove effective in controlling a prosthetic hand based on EEG 

signals.   
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To create an effective SI experiment the EEG signals need to be recorded long enough, 

with the various motions.  The motion time and duration of each movement need to be 

recorded for an effective SI experiment, such as shown in Figure 6.7. 

This experiment will build on the current working setup shown in the previous section, 

and the patients have been trained on how to use the system.  In this experiment, the 

patient will to do specific motions for so long.  The EEG data will be recorded, along 

with the amount of time the patient performed the experiment and the order the motions 

where executed in.  The EEG signals will be analyzed with SI using this information.  

The output from the SI will then be input to a fuzzy controller to control motor 

movement. 

The patients will be told to send certain movements for a given period of time.  The 

motions and time that the patient will perform the tasks are shown in Figure 6.7.  The 

number 2 correlates to an up motion on the movement paths figure, the value 1 is for 

right motions and 0 represents the neutral position.  The value -1 represents left motions 

and -2 is for down motions.  The x axis is time and each unit is 0.0087 seconds. 
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Figure 6.7: Motion Path for Patients 

 

6.9.2 SI of EEG Signals 

The experiments took many more runs than expected because the user would often have a 

motion that didn’t coincide with the path that was given to them.  After the experiments 

were conducted and the data was collected post processing could be performed.  The 

initial process is doing SI on the EEG signals. 

The data from the Emotiv are stored as EDF files which need to be converted as 

discussed in Section 3.3.  The CVS file is a file that can be opened in Excel and then read 

into MATLAB™.  The path information needs to be created too.  This was done by 

recording the computer screen while conducting the experiment.  A motion path was then 
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created for the experiment such as Figure 6.7.  With the EEG and motion data imported 

into MATLAB™ then the SI toolbox can be used to do system identification on the EEG 

signals.  The SI toolbox was used to do the SI on the signals.  Figure 6.8 shows the SI 

toolbox in MATLAB™.  Once the data is imported the interface can be used to create a 

state space model.  See Appendix, System Identification Steps, for detailed steps on how 

to create the model.   

 

 
Figure 6.8: System Identification Toolbox from MATLAB™ 
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After the model is created the data can be exported to the workspace.  Drag the model to 

the workspace button on the interface in Figure 6.8.  The data can be plotted through the 

tool or can be plotted directly from MATLAB™ using the plot commands.  For the 

commands to plot from MATLAB™ see Appendix, MATLAB™ Figure Formatting and 

Creating Code.   

Figure 6.9 shows the plot of the SI model of the EEG signals with the exported 

information from the SI toolbox.  The SI model is able to model most of the major 

movements.  The output of the SI model could be used to create signals to be sent to an 

embedded platform as voltages that would interpret those signal voltages as motions.  

The embedded process could then send signals to motors connected to a prosthetic hand 

to move the thumb. 

Figure 6.9 shows the best results out of all the experiments done and it miss-identified a 

few motions which would cause the prosthetic hand to do a movement that the user did 

not intended.  The SI model also overshoots the desired motion in many of the instances 

which isn’t a problem where there is not a movement associated for 3 or -3.  If there was 

it would cause additional incorrect movements. This would be frustrating for the user and 

so additional work will be done to make the controller respond more accurately in future 

work.   
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Figure 6.9: STI Model Output 

 

6.9.3 Fuzzy Controller Design 

The next step to build upon the SI model is using a fuzzy controller.  To do this the 

different motions will have to be programed into the controller.  Using the MATLAB™ 

fuzzy toolbox a fuzzy controller is developed.  Figure 6.10 shows the input membership 

functions.  The membership function range was defined between -4 to 4 as an input.  The 

five motions ranges that were used in the experiments were programed into the fuzzy 

controller.  The inputs have a range that will be used. From about -1.45 and lower is 

considered a down motions range, -1.45 to 0.45 is the range for the Left motion, -0.55 to 

0.55 is Neutral, 0.45 to 1.55 is a Right motion and greater than 0.45 is the Up motion 

range.  Different fuzzy types were tried but the best was trimf. 
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Figure 6.10: Fuzzy Controller Membership Function Input 

 

Figure 6.11 shows the outputs that will be used.  In this case the output range will be 

from -2 to 2.  These outputs are the same values as were in Figure 6.7.  The outputs can 

be many different things such as voltages.  The output voltages could be used as an input 

for an embedded processor which in turn control motors based on the output.   
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Figure 6.11: Fuzzy Controller Membership Function Output 

 

The rules that were used for the fuzzy controller to correlate the input with the output are 

show in Figure 6.12  These are set by the user and can be modified depending on the 

need of the controller.  Another way of looking at the rule is using the surface graph that 

is shown in Figure 6.13.  These are two different ways of visualizing the correlation 

between the same input and output. 
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Figure 6.12: Fuzzy Controller Rules 

 

 
Figure 6.13: Fuzzy Controller Surface Rules Visualization 

 

With the fuzzy controller created it needs to be exported to MATLAB™’s workspace by 

using file save, then export to workspace.  The fuzzy controller has to be exported to the 

work space to be used in Simulink™.  To use the fuzzy controller in Simulink™ the 

fuzzy logic controller block needs to be placed.  Open up the fuzzy block and then enter 
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the name for the fuzzy controller that was exported to the MATLAB™ workspace.  They 

have to be the same name or it will not work.  The input data needs to be imported from 

the workspace using the block shown in Figure 6.14.  The input matrix needs to be a 2D 

array with one of the columns being the time and the other the actual data from the SI as 

seen in Figure 6.9.  The FuzzyOut1 block exports the results from the fuzzy controller to 

the workspace.  Adjust the time at the top by using play to reflect the amount of time in 

the input value. 

 

 
Figure 6.14: System Identification Fuzzy Controller Simulink Model 

 

The results from FuzzyOut1 can be plotted using the method shown in Appendix Error! 

eference source not found..  The results are shown in Figure 6.15.  This can be 

compared to Figure 6.9.  The fuzzy controller miss-identifies some places but for the 

most part is able to more successfully identify the motions better than the SI alone.  Some 

of the spots where it drops quickly and rises again can be ignored by the microcontroller 

since the sampling rate is much slower.  The motors will also not respond at that 

frequency. 
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Figure 6.15: Fuzzy STI Model Output 

 

6.9.4 Validations 

With the fuzzy controller a validation needs to be done to see how effective the controller 

worked.  This was done by using different EEG signals by the same patient.  The signal 

was input to the SI and the output was plotted.  The SI was not successful as can be seen 

from Figure 6.16.  The predicted motion does not follow the actual motions’ path like it 

did in the previous section.  The magnitude of the SI is also not within the range of -2 to 

2 either. 
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Figure 6.16: Validation Plot 

 

It is unfortunate that the validation was not successful which means that SI was not able 

to successful identify the system.  But an effective fuzzy controller was designed that was 

able to more effectively control the output signal than the SI.  This can be applied to other 

problems where SI is successful in identifying the system.   

In an attempt to make the SI work better an additional algorithm was tried.  It is a Blind 

source algorithm.  It has been known to be used in EEG signal processing before.  The 

blind algorithm that is used is the Algorithm of Multiple Unknown Source Estimation 

(AMUSE), [41].  The MATLAB™ code for the AMUSE is in Appendix AMUSE 

MATLAB™ Code.   
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This algorithm did not perform very well.  A blind source toolbox, ICALAB, was used to 

see if it results were different.  It was able to give a little better results than the 

MATLAB™ version which was based on the original AMUSE paper.  The ICALAB 

toolbox’s results did not differ any from the original SI.  The differences in outputs from 

the SI and the AMUSE blind algorithm were negligible.   

In conclusion of this section, the SI of the EEG signals was not effective.  A success of 

this part of the experiment though is that a fuzzy controller was successfully created that 

would work off the SI, [41]. 
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Chapter 7:  Six DoF Prosthetic Hand Experiment 

and Setup 

The next phase of this research is to create a platform that can control multiple motors 

with multiple inputs.  The inputs are a sEMG signal and EEG signals.  Figure 7.1 shows 

the flow diagram of how the system is set up.  A 3-sensor pair is used to collect the 

sEMG signals and the Emotiv is used to collect the EEG signals.  For this chapter a novel 

approach is used, where a dual biological signal controller is used.  The sEMG signals are 

used to control the robotic fingers and the EEG signals are used to control a 2 DoF 

thumb.   

One of the motivations for dividing the control of the thumb from the fingers is that 

sEMG signals for the thumb muscles are very difficult to acquire and what can be 

measured are only a limited part of what is used to control the fingers.  Most of the 

control for the thumb originates in the hand.  To overcome this, EEG signals will be used 

so that the user of the robotic hand can have more control over the hand when preforming 

a myriad of grasps. 
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Figure 7.1: Multi-Motor Setup.   

 

 

. . . . 
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7.1 Equipment 

The idea of this design is that the embedded system will be able to use any controller by 

having an input file, which is a signal from the user.  This will allow the hand to be 

actuated by controllers designed in MATLAB™ or Simulink™ or a hybrid.  This will be 

an advantage because it will not limit the control design to just the block set supported by 

Simulink™. 

This design will not be real-time, but it will be one step closer to that goal.  It will also 

increase the versatility of the system.  Using the Arduino as the embedded processor will 

significantly expedite the coding process.  The code is based on C, and the program is 

open source.  Thus, there is a large reservoir of code examples.  It is also straight forward 

to program compared to previous embedded processors.  This will allow for a better 

transition between people doing research on the hand because a lengthy training process 

will not be required.  This is done because only basic programming skills will be 

required. 

The equipment setup will be similar to the EEG set up in Section Chapter 6: , Two Motor 

Robotic Thumb.  The Emotiv will be used to acquire EEG signals from the patient.  The 

Arduino will be the embedded platform for receiving the different input singles and 

controlling the motors.  The sEMG setup will be similar to the setup in, [2] [3]. 
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The existing embedded circuitry needs to be modified.  The embedded system did not 

have any protection or isolation from the servo motors.  If there is a fault in the servo 

motors, it could cause a surge that could harm the microcontroller. 

The button on the desktop of the computer that received commands for the keyboard was 

used in this platform.  See Figure 6.2 for the button; the button changes colors depending 

on the button that was pressed.  This button sends commands to the Arduino through 

Processing to move the motors.  This button allows users to test the motors while the 

code is running to ensure all the motors are working properly.  The button for this work 

will be expanded to have multiple buttons for the different motors 

 

7.1.1 New Equipment 

A couple of additional pieces of equipment are needed for this setup.  An external power 

supply is needed because the Arduino is not able to provide enough power to drive 6 

servo motors as in the previous setup.  A 5V external power source was used to power all 

the servo motors.   

Circuit protection is implemented in this system.  Currently other experiments done by 

students just attached the servo motors directly to the embedded processor pins.  This will 

not provide adequate protection for a final product used by a patient.  
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Servo motors’ most common failure and worst case failure is a dead short.  The servo 

motors are powered by 5 V.  The Arduino max current is 50 mA for a single pin.  The 

protection resistor needs to be greater than 100 Ω as shown in Equation (14). 

 

Rprotection = 
   

     
       (14)     

 

The sEMG was measured by the NORAXON MyoSystem 2000.  The sampling rate is 

1,000 samples a second (or 1,000 Hz frequency).  The device did basic high- and low-

pass filtering to reduce noise from heart beats and other noise that can corrupt the sEMG 

signals.  The system then outputs that information into an output text file. The files saved 

the three electrode readings with the raw sEMG data with only the noise removed and 

another set of data was saved with the filtering and rectification of the data. 

 

7.2 Equipment Setup 

The EMG signals were measured with sEMG electrodes.  The sEMG electrodes were 

dual GS27 ECG and EMG disposable silver/silver chloride pre-gelled surface electrodes.  

The electrodes measure the voltage on the skin’s surface created by the actuation of the 

motor units within the forearm, along with other muscles which is why filtering is 

required.  The gel helps the sensors create better contact with the skin which decreases 

the impedances.  The gel is also conductive which allows for a better connection to the 

skin.  Before the sEMG sensors were placed, the subject’s skin was prepared according to 
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International Society of Electrophysiology and Kinesiology (ISEK) protocols [42].  The 

arm was shaved in the region in Zone 2 where the sensors were to be placed.  The area 

was also cleaned with alcohol prior to electrode placement to allow for better contact 

with the skin surface and also to lower the impedances.  See Figure 7.2 for the electrodes 

and electrode connectors.  The electrodes measure the voltage between a red and black 

electrode.   

 

 
Figure 7.2: Electrodes and Connectors 

 

The electrodes were placed in a 2-by-3 array on the surface of the forearm over the main 

flexor muscle bellies.  See Figure 7.2 for the sensor setup.  The six sensors were placed in 

the proximal portion of the forearm, towards the elbow.  Using a measuring tape, a mark 

was made 11 cm from the bottom of the wrist towards the elbow.  Then a mark was made 

half-way between the elbow and the 11 cm mark.  The array of 6 sensors was centered at 
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this mark.  Two sensors were placed perpendicular to the muscle fibers and centered at 

the halfway mark.  Then two sensors were placed towards the wrist and two towards the 

elbow.  They were all evenly spaced with enough space so that the sensors didn’t overlap 

each other.  For a full explanation of sensor placement rational see the author work in [2] 

[3].  A reference electrode was placed on the elbow where no significant sEMG signal 

can be measured.  See Figure 7.3 for the electrode placement on the forearm.  The 

electrode pair closest to the wrist is the 1
st
 channel, the middle one is the 2

nd
 channel and 

the 3
rd

 is the channel closest to the elbow. 

 

 
Figure 7.3: Electrode Array Placement  
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7.3 Test Setup 

7.3.1 sEMG Thesis Entropy Method 

The prosthetic hand is based on the work that was done in Section Chapter 6: , Two 

Motor Robotic Thumb, and work done in the author’s thesis [2].  The system is expanded 

so that it is able to control six servo motors instead of two.  The thumb is controlled by 

two servo motors.  The other four servo motors are used to control the fingers of the 

hand.   

The four servo motors that represent the fingers are controlled by EMG signals.  These 

signals are collected by three electrode pairs.  These signals are a baseline signal, power 

grasp of a ball, power grasp of a dynamometer, power grasp of a water bottle, power 

grasp of a soft cylinder, pad to pad pincer grasp of all fingers together, pad to pad pincer 

grasp of index, middle, ring and pinky fingers separately, key grip, and opening and 

closing a lid.   

The reason that these motions were used was that they are common tasks that people 

often do in a day.  The electrodes that are used for this project are disposable external 

electrodes.  Each electrode has its own adhesive that allows for a strong bond to the skin 

which reduces the impedance.  This results in cleaner and more reliable readings. 
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These signals were taken from work done in my thesis [2].  The signals were acquired in 

zone 2 and were then post-processed by a fuzzy controller.  These signals could then be 

input into the Arduino for control of the fingers. 

The post-processing on the sEMG signals consisted of multiple steps.  The first step was 

to convert the signals into a format that MATLAB™ could read by removing the titles 

and other information that wasn’t needed.  Then the entropy of each hand motion was 

calculated for a number of patients.  With this information, a range of entropy values 

were created.  The different hand motions and entropy values can be seen in Table 7.1. 
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Table 7.1: Entropy for Single Motion End Results [2] 

Baseline Ball Close & Open 
Water Bottle Close & 

Open 

 
Average z2^2 

  
Average z2^2 

  
Average z2^2 

 

Average 0.7159 
 

Average 0.2682 
 

Average 0.2651 
 

Range 0.494 to 0.9378 
 

Range 0.1863 to 0.35 
 

Range 0.2018 to 0.3285 
 

      
   

Towel Close & 

Open 

Pad to Pad All 

Fingers Close & 

Open 

Pad to Pad Index 

Finger Close & Open 

 
Average z2^2 

  
Average z2^2 

  
Average z2^2 

 

Average 0.3309 
 

Average 0.4008 
 

Average 0.4406 
 

Range 0.2916 to 0.3703 
 

Range 0.2747 to 0.5269 
 

Range 0.3393 to 0.5419 
 

         Pad to Pad Middle 

Finger Close & 

Open 

Pad to Pad Ring 

Finger Close & 

Open 

Pad to Pad Pinky  

Finger Close & Open 

 
Average z2^2 

  
Average z2^2 

  
Average z2^2 

 

Average 0.4645 
 

Average 0.4246 
 

Average 0.4508 
 

Range 0.397 to 0.532 
 

Range 0.3681 to 0.481 
 

Range 0.3955 to 0.506 
 

         Key Grip Lid Open & Close 

   
 

Average z2^2 
  

Average z2^2 
 

   Average 0.4172 
 

Average 0.2667 
 

   Range 0.3518 to 0.4825 
 

Range 0.1662 to 0.3672 
 

    

In Table 7.1 the baseline has a much higher average than the rest of the experiments.  

This means that the sEMG signals of people’s arms in a relaxed position are more 

random than when they are doing a task.  This is true since most of the signal in a relaxed 

position is random noise which would have a higher entropy value and helps support that 
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these results have meaningful information.  Using Table 7.1, ranges for the different hand 

motions can be created.  The relaxed position has a high value of entropy; the ball grasp, 

water bottle, and lid experiments’ average spectral entropy are very close to each other, 

around 0.26.  These motions are similar in nature and require a large amount of force 

while grasping an object.  The towel grasp was different from the other power grasps.  

There are many different factors that could cause it, but one reason may be that the towel 

did not provide as much resistance as the ball, water bottle, or the lid.  This would cause 

the force required to be less, and as a result it would have a higher entropy value.  

Simulations were conducted using the Simulink™ model for all the different hand 

motions.  The overall results from the experiments are summarized in Table 7.2. The 

different channels are the electrode pairs of positive and negative.  The lowest 

performance was the 1
st
 electrode, the group closest to the elbow. It correctly 

characterizes between the four different motions 50% of the time.  The 3
rd

 electrode has 

the highest accuracy, with 75% accuracy.  The signals from the 3
rd

 electrode will be used 

for the experiment.   
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Table 7.2: Summary of Signal Classification by the Intelligent Classifier, [2] 

Electrode Correctly Characterized 

1
st
 50.0% 

2
nd

 58.3% 

3
rd

 75.0% 

System Total Accuracy 75.0% 

 

 

This promising method for determining motion from sEMG signals will be expanded 

later in this chapter.  This will expand the work that was done in [2] to be used on the 

prosthetic hand. 

 

7.3.2 EEG Signals 

EEG setup and signals used in the 6 DoF hand experiment will be taken form the 

experiments in Section Chapter 6: , Two Motor Robotic Thumb.  There will be some 

post-processing that will be done on the fuzzy controller output to make it work with the 

developed system which will be discussed in a later section. 
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7.4 Six DoF Hand Tools and Interface Development 

7.4.1 Hand Visualization Tool for a Six DoF Hand 

To help facilitate prototyping and testing for a prosthetic hand, a platform was created 

that visualizes the hand and receives inputs the same as the prosthetic hand would.  To 

help in the development of algorithms for a large group of researchers, a virtual hand was 

developed.  Figure 7.4 and Figure 7.5 are pictures of the virtual hand fully opened and 

closed.  This hand has 6 DoF, one for each finger and two for the thumb.  Movement is 

shown with fingers and thumb sliding and the change of color for the second degree of 

freedom on the thumb which allows the user to quickly see that the hand is responding to 

commands.  The virtual hand was created with Processing.  This was the same program 

used for creating the button in Figure 6.2.   
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Figure 7.4: Virtual Hand Open 

 

 
Figure 7.5: Virtual Hand Closed 

 

 

7.4.2 Control of Virtual Hand 

The fingers can be moved with the keyboard or with an input from a text file.  The 

keyboard keys are as follows: for the pinky ‘a’ opens and ‘z’ closes, for the ring finger ‘s’ 

opens and ‘x’ closes, for the middle finger ‘d’ opens and ‘c’ closes, and for the index 

finger ‘f’ opens and ‘v’ closes.  The thumb has two DoF so for the 1
st
 DoF ‘g’ opens and 

‘b’ closes, and for the 2
nd

 DoF ‘h’ opens and ‘n’ closes.  The colors change so that it is 

easy to recognize that the position has moved; especially when the hand is fully open and 

begins to close.  When the fingers move on the screen, the embedded system will also 

send signals to the corresponding pins which will move the motors.  Servo motors were 

used for these experiments.   
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The code has different options that can be set depending on the testing that will be 

performed.  There is a manual mode where the user can move the fingers with the 

keyboard keys.  Another is that it will read in a text file, and based on the numbers that 

are in the text file, the fingers will move accordingly.  The code will also allow for 

predetermined hand motions to be used as well.  For example, [2] had a pad to pad 

middle finger grasp which would move the middle finger and the thumb.  Sending the 

command with this motion would move the middle finger and the thumb to their fully 

closed position while leaving the rest of the fingers open. 

Depending on the desired motion, the input numbers may need to be modified.  For the 

default, the following numbers will move the correlating finger.  For the pinky 0 opens 

and 1 closes, for the ring finger 2 opens and 3 closes, for the middle finger 4 opens and 5 

closes, and for the index finger 6 opens and 7 closes.  For the thumb’s 1
st
 DoF, 8 opens 

and 9 closes and for the 2
nd

 DoF, 10 opens and 11 closes. 

The core code in Processing sends commands to the virtual hand on the computer screen 

and the Arduino.  When the keys are pressed on the keyboard, the signals are used to 

send positions to the virtual hand and also the embedded processor through the Arduino 

Programmer.  The embedded processor uses the same keyboard command to increase or 

decrease the PWM signal sent to the servo motors which in turn adjusts the position of 

the motor/finger. 
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7.4.3 sEMG Entropy Algorithm Implementation 

After getting the virtual hand working with the keyboard and having the servo motors 

move at the same time, the next stage was to make it so the virtual hand could move with 

the biological signals.  The embedded system will be able to receive two different signals 

and use them for controlling the hand.   

The sEMG work done previously needs to be expanded for this hand.  This section will 

implement the work done in [2] [3] with multiple hand motions in a single signal file.  

Below, Figure 7.6 shows sEMG signals from a person’s forearm for a number of different 

hand motions.  The first half of the signal is of a person holding their hand still, 0 seconds 

to 13 seconds.  The first group with the largest amplitude sEMG signals is a power grasp, 

13 seconds to 16 seconds.  The next group of signals is a pad to pad middle finger 

motion, 16 seconds to 18 seconds, and the last group is a key grip, 18 seconds to the end. 
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Figure 7.6: sEMG Signal for Multiple Hand Motion 

 

The signal in Figure 7.6 is then input into the entropy calculation algorithm.  The 

algorithm was modified from the original one in [2] [3] because it was only used to 

identify a single motion at a time and only one motion was given at a time to the 

algorithm.  The algorithm then calculated the entropy of the entire signal in question.  

The modified algorithm accepts many motions in one signal.  To do this, the algorithm 

had to break the signals into smaller pieces and calculate the entropy for those smaller 

segments.  The main signal is broken into about two second (2.07 seconds) segments, and 

then the entropy is calculated.  This time was used because there has to be enough data 

points to calculate the entropy to get meaningful results.  Also, based on experimenting, 

around 2 seconds gave the best results for the sampling time of the system used.   
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After that, the entropy values are then input into the fuzzy controller and the controller 

determines the motion.  The membership functions for the fuzzy controller were modified 

slightly from the original ones in [2] [3] and are shown below in Figure 7.7.  The rules of 

the fuzzy controller have not been changed and are shown in detail in [2] [3].  Note that 

the baseline or neutral is when the people are holding their hand still and MFinger means 

pad-to-pad middle finger grasp. 

 

 
Figure 7.7: Fuzzy Controller Membership Functions Plot 

 

The fuzzy controller then outputs a number depending on the rules and membership 

functions.  The output values are defined as shown in Figure 7.8.  This plot shows that if 

a power grasp is identified, a 2 will be output, a key grip is represented by 4, a pad-to-pad 

middle finger grasp is shown by a 6, and if the hand is doing nothing or relaxed then a 10 

is output. 
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Figure 7.8: Fuzzy Controller Output Values 

 

The flow of the algorithm is shown in Figure 7.9.  The signal from Figure 7.6 is input 

into the fuzzy controller which is stored in MATLAB™’s workspace.  The controller 

reads the file from the workspace controller, determines the motion, and outputs a 

number based on Figure 7.8.  The scope displays the graph and can also be set to save the 

plot back to the MATLAB™ workspace.   
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Figure 7.9: sEMG Fuzzy Controller Flow Diagram 

 

Figure 3.1 is a plot of the actual motions that were performed in Figure 7.6 using the 

fuzzy controller output values.  Figure 7.11 is the resulting plot from the fuzzy controller.  

Comparing the two plots shows that the fuzzy controller was very successful in 

characterizing most of the signal.  The controller was able to successfully identify the 

correct motions 90 % of the time.  These are promising results because of such a high 

accuracy in correctly identifying the different motions. 
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Figure 7.10: sEMG Actual Hand Motion 

 

 
Figure 7.11: sEMG Predicted Hand Motion with Entropy  
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7.4.4 EEG Signal 

The signals used for the EEG portion of this experiment are similar to the ones used in 

Chapter Chapter 6: .  This method did not need to be expanded on further to be able to 

run on this platform as did the sEMG signals.  These signals are also being used to prove 

that the controller and embedded processor can receive signals from two different 

biological signals. 

 

7.4.5 Text File Format 

With sEMG signals and EEG signals processed so that they can be run and an output 

obtained, an input method to the prosthetic hand platform needs to be created.  Different 

methods were considered and finally it was decided the best method would be to use a 

text file as the input to the prosthetic hand platform.  The advantage of the text file is that 

most computers can natively handle text files.  Many program used to create controls 

have the option to output the file as a text file.  Also, saving as a text file reduces the size 

of the file which is important when working with embedded processors.  File size is 

important to limit on embedded platforms because memory is often small and it is 

expensive to add.  The add-on memory often has slower execution speeds with larger 

files. 

For the text file method to work properly a standard of how to format the data in the file 

needs to be set.  The simplest and most straightforward method is to make it so only one 
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number was on a line.  The number could be from 0 – 99.  For practical purposes this was 

made for this range.  It can be expanded if need. 

The sEMG data plotted Figure 7.11 is an array of numbers.  This output can be put into a 

text file that can be read by the Arduino.  The numbers from the graph can be put into a 

text file with carriage return after each number or data point.  The Processing code sends 

the data to the embedded processor and the Arduino uses that information to change the 

position of the servo motor.   

The numbers in the text file need to correlate to the movement numbers listed in Chapter 

Chapter 7: , Section 7.4.2 Control of Virtual Hand mainly; 0 opens and 1 closes the 

pinky, 2 opens and 3 closes the ring finger, 4 opens and 5 closes the middle finger, and 6 

opens and 7 closes the index finger.  For the thumb’s 1
st
 DoF, 8 opens and 9 closes and 

for the 2
nd

 DoF, 10 moves the thumb up and 11 moves the thumb down if applicable.   

To open the entire hand a repeated sequence of odd numbers can be sent to the hand.  

Likewise to close then hand even numbers can be placed in the text file.  To do different 

hand grasps they can be done by sending a sequence of numbers required to perform the 

grasp in the text file.  Another method is to send a number from 0 – 10 in the Arduino 

code and when that number is sent have the Arduino move the motors to the desired 

positions.  Both methods are used in the code in Appendix under the Six Servo Motor 

Arduino and Processing code. 

It is important to note that the signal text files that are read using Processing need to be 

saved in the same file as the Processing main code and Class code.  The file name also 
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has to be the same as the file name in the Processing code and it is best to not use spaces 

in the text file name and names of code.   

 

7.5 Six DoF Hand Experiment 

With the virtual hand created and the motor control from the embedded processor 

developed, the next stage is to control the motors with actual biological signals.  For this 

part of the process a universal method needs to be implemented.  In the past [1] [3] [16] 

[43] control algorithms were developed.  The problem is that the algorithms were 

developed with different programs.  Some were made in MATLAB™ or Simulink™.  

These are both part of MATLAB™ but the way the code interacts with an embedded 

processor requires completely different toolboxes.  It is also possible to develop control 

algorithms for a system with LabVIEW™, Micro-Cap, LTSPICE, or even C++.  With so 

many different programs that could possibly be used to develop control for the prosthetic 

hand a universal approach needs to be taken to ensure that all the different controls could 

be tested on this platform.   

 

7.5.1 Virtual Hand and Embedded System’s Prosthetic Hand Code 

To conduct the experiment, an interface between the virtual hand and the embedded 

processor was created.  For the two to interact with each other, first the embedded 
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processor needs to be programed with the Arduino Programmer and then the virtual hand 

code is loaded.  The Arduino code receives information that is sent to it from the 

processing code.  Based on those signals the processor moves the appropriate motors and 

executes other commands.  The main Processing code initializes all the variables, uses 

the class to create the virtual hand, is in charge of controlling the virtual hand, reading the 

biological signal files and sending signals to the embedded processor.  Both these files 

need to be in the same file for the code to work properly. 

The Processing code uses a class to reduce the size of main().  The class Shape is in a 

separate file and is used to create the hand in Figure 7.4 and Figure 7.5.  This class code, 

along with the other Processing and embedded code, uses a matrix to reduce the size of 

code.  Instead of writing for loops for each finger and thumb, a single for loop was 

created that steps through each element in a matrix.  Each index in the matrix represents a 

different finger or thumb.  This makes the code more compact and elegant.  The code 

would be about double the length - if not more - otherwise.  This makes it easier to 

update the code and change parts of the code too.  It also reduces redundant code which is 

a must in professional programming.   

The flow of the code can be seen below in Figure 7.12.  This shows the flow of the 

processing code.  The flow diagram of the Arduino code is in Figure 7.13. 
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Figure 7.12:  Processing Code Flow Diagram 

 



92 

 

 
Figure 7.13:  Arduino Code Flow Diagram 
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7.5.2 Servo Motor and Embedded Platform 

With the embedded processor and the computer being able to communicate with each 

other, the motors and circuitry were connected.  As stated earlier in this chapter the main 

circuit protection used were resistors.  The resistors were connected in series with the 

digital output pins of the embedded processor.  The other end of the resistor was 

connected to the signal pin of the servo motors.  The power for all the servo motors was 

provided externally with a power supply.  This reduced the loading effect on the 

embedded platform since it is unable to provide enough current to drive all the servo 

motors under a loaded condition.  All the grounds have to be connected; this means that 

the power supply, servo motor and embedded processor grounds need to be connected.  If 

not, the embedded processor voltage relative to the servo motors will be different and the 

motors will not move or will respond in unpredictable ways. 

Figure 7.14 shows the setup of the embedded processor with the circuit protection, power 

supply and the servo motors.  These servo motors were successfully moved using the 

keyboard in conjunction with the virtual hand.  They both moved when the keys were 

pressed, and after some adjustments, the virtual hand and the servo motor reached their 

limits at the same time. 
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Figure 7.14: Six Servo Motor Setup with Embedded System 

 

7.5.3 Biological Signal Input 

Once the key command part of the code was validated the biological signal capacity was 

tested.  Two different signals were used for this part: a sEMG signal and an EEG signal.  

Both signals were acquired with different data acquisition devices and processed using 

different algorithms.  Both algorithms used a combination of MATLAB
®
 and Simulink

®
.   

The results from the algorithms were then converted into a text file following the rules in 

Section 7.4.5.  Sample of the text file can be found in Appendix, sEMG Processed Signal 
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Text File Sample, and EEG Processed Signal Text File Sample.  These files were much 

shorter than the original files because they had thousands of data points and often a 

number may be sent hundreds of times in a row.  Notice in the sEMG signal file that 

close or open commands are sent by a string of even or odd numbers correlating to the 

fingers.  In reality the fingers are not moving in parallel but to the naked eye they appear 

to move together.   

This part of the experiment worked well.  There was no buffering or delays while the file 

was being sent.  All six servo motors were able to be moved with the system setup.  To 

finalize this work it was decided to use this code on an actual robotic hand. 

 

7.6 Five DoF Robotic Hand Implementation 

The final stage of this dissertation was to implement the working prosthetic hand system 

with an actually robotic hand.  Figure 7.15 is a picture of a robotic hand with 5 DoF.  

This robotic hand is controlled by 5 different servo motors.  Each servo motor controls a 

different finger or the thumb.  The hand has the ability to grasp different objects.   
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Figure 7.15: Five DoF Prosthetic Hand 

 

The fingers and thumb are connected to the servo motor with a rod.  The servo motor 

then pushes and pulls the rod to move the finger or thumb.  Because the servo motors 

push and pull rods at the extreme ends of motion, the servo motors cannot provide as 

much torque to the fingers at fully closed or fully open positions.  This also limits the 

range of motion to much less than 160 degree movement that a typical servo motor has.  

Some motion is as little as 20 degrees. 

Even though this hand has these short comings it is a simple and elegant design.  For this 

final experiment it was shown that a robotic hand could be controlled using this system.  
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The actual hand and the prosthetic hand could be moved in unison.  This showed too that 

a prosthetic hand could be controlled using sEMG and EEG signals at the same time. 
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Chapter 8:  Results and Analyses 

The results are excellent and showed that the entire system could control a robotic hand.  

The EEG system worked reliably for controlling a robotic thumb along with sEMG 

signals being used to control the fingers of the robot.  The system was successfully able 

to execute the control of the hand with different algorithms developed in different ways 

using two programs. 

sEMG signals were successfully used to control robotic fingers successfully.  The 

author’s work in [2] and [3] was expanded on so that the entropy fuzzy algorithm could 

be used to receive multiple hand motions in one file and successfully identify the 

different motions.  This advanced the algorithms functionality and made it much more 

versatile.   

For the sEMG signals, some of the variation and unsuccessful characterization may have 

been due to there being male and female subjects.  Research done in [44] shows that sex 

causes variability in EMG amplitudes.  Gender also may affect entropy calculations [2]. 

Overall the use of sEMG signals was successful.  The sEMG signals were correctly 

identified.  Those identified motions were then used to send by the code to control robotic 

fingers.  Some of the hand motions that were used only moved one finger while others 

moved all four fingers. 
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Experiments showed that the system successfully identified signals and actuated the 

motors for the thumb 90.5% of the time.  Occasionally the user needed to resend the 

signal two or three times to obtain a response.  This generally depended on the mental 

fatigue of the person.  After an hour of using the system the subjects began to have some 

difficulties sending the signals.  The EEG identification was 80.0% at that time.  With the 

results working well, a pod cast was created showing the system, explaining the setup, 

and showing the functioning system. 

Initially training the patients was critical to the success of the EEG headset system.  

Sometimes an action would have to be trained numerous times.  These repeated trials 

helped the system better identify the unique user.  The users would also become more 

proficient at executing the actions.  Once the training was completed the patients were 

able to reliably use the EEG system.   

The few times the EEG system didn’t identify the signal correctly, before fatigue began 

to set in, was mostly due to excessive eye blinking while the signal was being sent.  

Blinking is known to cause problems with EEG measurements and is called artifact noise.  

With practice the subjects were able to send signals without interrupting the signals by 

blinking.  If the patients took time to train, sometimes electrodes needed saline solution 

reapplied to them.  These steps allowed for high accuracy which made controlling the 

prosthetic thumb feasible. 

A virtual hand that represented a 6 DoF hand was developed and implemented.  The hand 

was able to display when signals were sent either by the keyboard or by a biological 
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signal or signals.  The virtual hand has a high degree of accuracy so that if precise hand 

movements are required it can handle these.   

The sEMG and EEG processing algorithms were both implemented in MATLAB
®
 and 

Simulink
®
.  These algorithms were processed differently within these programs.  The 

results from the algorithms were then formatted into a text file.  This text file was then 

used for the control of the robotic hand.  This part of the project was successful in 

developing a method that could use a universal input to control a hand rather than one 

specific program.  This will help reduce cost because to run this a design team will not 

need multiple licenses of expensive program packages. 

The system identification effort in this work was unsuccessful.  A possible reason that it 

didn’t work was that there is a lot of noise in sEMG signals.  It is difficult to filter out all 

the noise from the surrounding environment and collect a pure sEMG signal.  The 

success of this part of the project was that a fuzzy controller was designed that filtered the 

output from the SI.  The fuzzy controller made the signal much more uniform which 

would be desirable when implementing on an embedded platform. 

The hand was able to work without the actual robotic hand being attached to the system.  

The ability to work independently of an actual robotic hand connected to the system will 

allow for it to be used for testing algorithms, or updating the code without the actual 

prosthetic hand being attached.  This will allow for a lab to have multiple people or teams 

working on a project with only a few prosthetic hands that will lead to cost savings to the 

labs.  The code was also written in C allowing for many users with different backgrounds 

to be able to work on the source code if needed. 
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A minor issue with the 5 DoF hand was that for some fingers the limits could not be 

adjusted to prevent the finger from shaking or making a humming noise.  This was also 

noticed in the 6 DoF experiments.  It appears to be a result of a defect with some servo 

motors.  These servo motors are inexpensive and so defects are more likely to occur.  For 

a final design it is suggested that more precise, robust, industrial grade servo motors be 

used to prevent this from occurring in the final prosthetic hand. 

The promising work in [1] [2] [3] was successfully implemented on an embedded 

platform and could control a robotic hand.  The platform could be controlled by either a 

computer or biological signals.  The code for the embedded processor and the virtual 

hand were both written in a common language to allow for a wider audience to be able to 

work on modifying or updating the code for their projects.  The code was also able to 

control up to 6 motors.  These abilities make this platform a more valuable test bed for 

experimenting with control algorithms and different prosthetic hands.   
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Chapter 9:   Conclusion 

With the increasing number of people who have missing limbs, the need for prosthetics is 

increasing.  Prosthetic hands are advancing in dexterity and complexity with modern 

robotics.  The controls for the hands are getting more advanced and are allowing for more 

dynamic inputs.  This dissertation looked at how to advance the control of prosthetic 

hands.  EMG signal processing algorithms have been used in the past for controlling 

simple robotic hands [2], but with the progression of robotic hands newer EEG methods 

may be able to be utilized in conjunction with sEMG signals to control a prosthetic hand. 

This dissertation had multiple objectives.  Expand on the author’s thesis [2]: specifically 

further develop the sEMG control method.  Develop a method to use EEG signals to 

control a robotic thumb of a prosthetic hand with 2 DoF.  Develop a platform that is able 

to control a robotic hand using multiple biological signals.  Also, this system needs to be 

able to work with different programming environments used for creating control 

algorithms.   

Non-invasive methods of controlling prosthetic hands are being researched because of the 

need for a low cost dynamic prosthetic hand because surgery is not need to place the 

sensors.  This dissertation improved on the previous work in [2] of the use of surface 

sensors to acquire EMG.  This work modified an existing entropy algorithm that was a 

viable control strategy.  It was modified so that it can be used to identify different hand 

motions in continuous signals with a high level of accuracy.   
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This paper presented a reliable method that is able to control a 2 DoF thumb by using 

EEG signals.  This system uses an EEG headset with surface sensors.  This is a cost-

effective solution for controlling a robotic thumb.  The results showed that surface EEG 

electrodes can be used to successfully control a robotic thumb.  A working model was 

synthesized that has been demonstrated to work with 90.5% accuracy in executing the 

user desired motion.   

sEMG and EEG control algorithms were developed using multiple programs.  Despite 

having the algorithms developed with different programs the outputs from the algorithms 

were then converted into text files based on set formatting rules.  A platform was 

developed that use these text files to control a robotic hand.   

The platform was developed using C, a common programing language.  This platform 

also had a virtual hand.  This virtual hand mimics what the actual hand does.  This is 

useful for testing if the robotic hand is unavailable.  The hand, virtual or real, can be 

controlled by the two different biological signals, or by keyboard commands.  The system 

also has an embedded processor that is in charge of controlling and interfacing with the 

motors.  Previous work didn’t implement any protection for the embedded processor so 

this was modified to provide overcurrent protection.   

This dissertation successfully created a system that was able to control an actual robotic 

hand.  This platform can also control a virtual hand and a robotic hand simultaneously.  It 

can take two different biological signals, sEMG and EEG, both created with different 

algorithms and use them in combination to control the hands.  Both of these novel 

algorithms have shown promising results in controlling a prosthetic hand.  This work was 
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done with a cost effective system, robotic hand, and non-invasive sensors.  This worked 

show that an agile system can be used to prototype different algorithms with or without 

an actual robotic hand attached to the system. 
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Chapter 10:   Future Work 

More experiments can be performed on a multitude of subjects to verify that weight, 

gender, age and other parameters do not affect the efficiency of the system.  If these do 

affect it, work can be done to overcome these problems.  Further research can be done in 

developing more robust filters to remove the blinking noise that is very prominent in 

EEG signals.  Experiments can be conducted to see how much time it takes for fatigue to 

set in and how much, if any, the time of the day affects the results.  Additional work can 

be done in looking how to use SI for processing sEMG signals.  Further work can be 

done with the embedded system by developing an independent ATmega 328 circuit board 

system to reduce the total size of the embedded platform.  Work should also be done to 

determine if this system can be patented.   
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Appendix

Emotiv File Saving Process After an Experiment 

Once the user has been trained, setup is complete and an experiment is conducted and the 

results want to be saved follow the procedures below:  

Open the Emotiv TestBench program, see Figure 0.1.  Do not close the control panel 

program. TestBench program, in Figure 0.1, allows the operator to record the EEG 

signals, and is only a part of the research edition of the software.  To save the data, click 

save, enter the information prompted for and save the data in the desired location. 
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Figure 0.1: Emotiv TestBench, [45] 

 

Finally, once the data has been recorded, the data can be either played back by using the 

load button in the bottom left hand corner as seen in Figure 0.1, or can be converted to an 

Excel CSV file.  To convert the EDF file, which is an Emotiv output recoding file, to an 

Excel CSV file, follow these steps: click Tools then click on convert EDF to CSV.  A 

window (see Figure 0.2) will open and the EDF can be converted to an Excel file which 

can be imported into MATLAB™. 
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Figure 0.2: Convert EDF to CSV, [45] 

 

Arduino Startup Check List 

Check that the correct board was selected: 

1) Tools 

2) Board 

3) Select the proper board for example the “Arduino Duemilanove or Nano w/ 

ATmega328” 

a) When selecting the board, make sure that that the correct chip size is chosen.  In 

the above example 328 was chosen because it has an ATM 328 chip. 
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Figure 0.3: Arduino Board Selection 

 

Make sure that the correct serial port is selected if there is a communication problem: 

1) Tools 

2) Board 

3) Serial Port 

(Note: If this doesn’t work sometimes unplugging the USB cable and moving it to a 

different USB port will work.) 

If the Arduino driver isn't working properly it might be because the correct driver was not 

installed.  To check and see, follow the instructions below: 
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1) Open Arduino environment 

2) Connect Arduino USB to the computer 

3) Verify that the drivers are working  

a) If not open up Device Manager 

i) Start 

ii) Control Panel 

iii) Device Manager 

iv) Right click on the USB with the error  

(1) Update Driver 

(2) Select the driver folder in the Arduino folder  

b) If driver is installed go to next step 

 

 
Figure 0.4: Unknown Device Detected 

 

4) Open a file  

5) Uploaded file (use Upload in Figure 0.7 and Figure 0.6 appears if it was a successful 

upload) 

If you get a “COM” error try moving the Arduino USB cable to another USB 

adapter/port. (See  

a) Figure 0.5) 

b) Make sure that you selected the correct Arduino under Tools, Board. 

 

 
Figure 0.5: COM Issues 
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6) Wait until it finishes loading (As shown in Figure 0.6) 

7) Open Serial Monitor (As shown in Figure 0.7) 

 

 

 
Figure 0.6: Done Uploading 

  
Figure 0.7: Arduino Front Conceal 

 

8) Upload Arduino Code from Arduino 22 or other version 

9) Play Processing code after Arduino 22 is uploaded. 
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sEMG Processed Signal Text File Sample 
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EEG Processed Signal Text File Sample 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

8 

8 

8 

8 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

 

 

 

 

 

 

 
 
 

 

 



120 

AMUSE MATLAB™ Code 

clear; % Clears all variables 

clc; % Clears the screen 

input('How many data points: '); L=ans; 

input('Model order p: '); p=ans; 

input('How many output signals: '); no=ans; 

load('matlab.mat', 'data') 

y = load('matlab.mat', 'data'); 

p = 100; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% STEP 1 Estimate Output Covariance Rx %%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[no,nd] = size(data'); % no is the number of output(rows), nd is number (columns) 

L = nd; 

  

y = zeros(no,L); % Creates a matrix of defined demintions with random numbers 

y = data'; 

  

phik = zeros(nd-p,no*p); % Creates a matrix of given size in increase speed 

for i=p:(nd-1) % rows 

    for j = 1:p % coloms 

        col = j; 

        phik(i-p+1,col*no-no+1:col*no)= y(:,i-j+1)'; 

    end; 

end; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%   Autocorrelation Rx = E{x(t)*x'(t)} %%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

[Q1,R1] = size(y); 

Rx = zeros(Q1,R1); 

for j = 1: Q1 

for m = 1: R1+1 

    for n = 1:Q1-m+1 

        Rx(Q1,m) = Rx(Q1,m)+y(Q1,n)*y(Q1,n+m-1); 

    end; 

end; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%% STEP 2 Compute SVD %%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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[U,S,V] = svd(Rx); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% STEP 3 Simga^2 %%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

phik = zeros(nd-p,no*p); % Creates a matrix of given size in increase speed 

for i=p:(nd-1) % rows 

    for j = 1:p % coloms 

        col = j; 

        phik(i-p+1,col*no-no+1:col*no)= y(:,i-j+1)'; 

    end; 

end; 

  

R = phik'*phik; 

  

  

Y = y(:,p+1:L)'; % Estimated yhat from y of p+1 columns to L (the end) 

temp = phik' * (phik); 

temp1 = inv(temp); 

  

thetaBarHat = temp1 * phik'*Y; % (phik' * (phik))^(-1) * phik'*yhat 

  

yhat2=zeros(no,L); 

  

for k = p+1:L 

    for i = 1:p 

        yhat2(:,k)=yhat2(:,k)+thetaBarHat((no*(i-1))+1:no*i,:)*y(:,k-i); 

    end; 

end; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Epsilon=y-yhat2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Autocorrelation 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

[Q,R] = size(Epsilon); 

%NEED TO FIX INDEXES 

Rxx = zeros(Q,R); 

   

for j = 1: Q % Rows for Rxx 
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for m = 1: R+1 % Columns for Rxx 

    for n = 1:Q-m+1 

        Rxx(j,m) = Rxx(j,m)+Epsilon(j,n)*Epsilon(j,n+m-1); 

         

    end; 

end; 

end 

sigma2 = Rxx(1) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% STEP 4 Preform Orthogonalization Transformation %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

S1 = S(S~=0)' % Removes the zeros in S and makes it a vector 

m = no*p; % m is this length so the code runs but we will 

% optimize m later. 

for i = 1:m 

    di(i) = sqrt(S1(1,i) - sigma2); % di in Algorithm 

end; 

  

Us = U(:,1:m); 

T = diag(1./di)*Us'; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% STEP 5 Estimate 4th Order Moment %%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Yt = T*y;%Epsilon; 

[Q,R] = size(Yt); 

Yxx = zeros(Q,R); 

for j = 1: Q 

  for m = 1: R+1 

      for n = 1:Q-m+1 

          Yxx(Q,m) = Yxx(Q,m)+Yt(Q,n)*Yt(Q,n+m-1); 

      end; 

  end; 

end; 

M = Yxx*Yxx; 

 

for i = 1:m 

    for k = 1:m 

        Sum(k) = (di(i)^.2 + 1)/di(k)^2 + 2 * sigma2/di(k)^2; 

    end; 

    deltai(i) = ((m +4)*sigma2)/di(i)^2 + sigma2/di(i)^2*Sum(k); 

end; 

deltaM = diag(deltai); 



123 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% STEP 6 Singular Valu Decomposition of M - delta M %%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

[U2,S2,V2] = svd(M-deltaM); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% STEP 7 Channel Estimation A0:Ahat = T'*V2 %%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Ahat = pinv(T)*V2;  % Ahat is pseudoinverse of T times V2 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% STEP 8 Signal Estimation So(*):Shat(t)=V'*y(t)%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for t = m 

    Shat(t) = V2(t)'*y(t) 

end; 

 

 

 

System Identification Steps 

1) Open the System Identification Toolbox, see Figure 0.8 

2) Import .sid file 

3) Select Linear parametric model, Figure 0.9 

a) Choose ARX 

b) Focus: Simulation 

c) Initial state: Auto 
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d) Covariance Estimate 

4) Click Estimate 

5) Select Model from the Model View section on the right 

6) Check Model output box 

7) The plot will display as in Figure 0.10 

8) To extract the data points to use in MATLAB™  

a) Click and drag the model to the To Workspace square shown in Figure 0.8 

i) This exports the System Identification model to the workspace of 

MATLAB™ 

b) Make sure that the input file (one used to make the model) is in the workspace 

too. 

c) Use the following MATLAB™ functions to extract the output 

i) ys = sim(arx441,EEG4motion) 

(1) ys is the output file variable name 

(2) the function sim(model, U) where model is the S.I. model and U is the 

input) 
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Figure 0.8: System Identification Toolbox 

 

 
Figure 0.9: Linear Parametric Model Menu 
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Figure 0.10: System Identification Output 

 

 

  

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

3

Time

Measured and simulated model output



127 

MATLAB™ Figure Formatting and Creating Code 

1. % This code creates figures and formats the title and axes making them readable  

2. % on a computer screen. This loads in variable from simulink and plots the results 

3. FuzzyOut = zeros(5000,2); 

4. FuzzyOutTemp = FuzzyOut1.signals.values(56:5055,:); 

5. FuzzyOut(:,1) = track2; 

6. FuzzyOut(:,2) = FuzzyOutTemp(:,1); 

 

7. ySTI = zeros(5000,2); 

8. ySTI(:,1) = track2; 

9. ySTI(:,2) = YS(9:5008,2); 

 

10. figure; 

11. hold on; 

12.         xlabel('Time/ 0.0087 sec per unit','FontSize',16,'FontName','Times') 

13.         ylabel('Motions','FontSize',19,'FontName','Times') 

14.         title('Fuzzy STI Output','FontSize',22,'FontName','Times') 

15.         plot(FuzzyOut(:,1),'color','k','LineWidth',2) 

16.         plot(FuzzyOut(:,2),'color','b') 

17.         legend('User Input','Fuzzy STI Output'); 

18. hold off; 

 

19. figure; 

20. hold on; 

21.         xlabel('Time/ 0.0087 sec per unit','FontSize',16,'FontName','Times') 

22.         ylabel('Motions','FontSize',19,'FontName','Times') 

23.         title('STI Output','FontSize',22,'FontName','Times') 

24.         plot(ySTI(:,1),'color','k','LineWidth',2) 

25.         plot(ySTI(:,2),'color','b') 

26.         legend('User Input','STI Output'); 

27. hold off; 
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