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Abstract

The research in the doctoral dissertation addresses the main topic of State-Dependent

Riccati Equation (SDRE) arising in regulator and tracking of nonlinear systems. This

topic can be thought of as the nonlinear counterpart of linear, quadratic regulator

(LQR) based control design. The greatest advantage offered by the SDRE is the

design flexibility of tuning the state and input penalty matrices as functions of states.

This research develops a new technique used for infinite-horizon nonlinear stochastic

problems, by integrating the standard Kalman filter with the infinite-horizon SDRE

technique.

Next, this research presents a new and computationally efficient online technique

for finite-horizon nonlinear deterministic problems. This technique is based on change

of variables that converts the nonlinear differential Riccati equation to a linear Lya-

punov differential equation. During online implementation, the Lyapunov equation

is solved in a closed form at any given time step. Further, an online technique is

presented for finite-horizon nonlinear stochastic regulating and tracking problems.

The idea of the proposed technique is to integrate the Kalman filter algorithm and

the finite-horizon SDRE technique. Unlike the ordinary methods which deal with the

linearized system, this technique estimates the unmeasured states of the nonlinear

system directly, and this makes the proposed technique effective for a wide range of

operating points.

Further, the proposed finite-horizon nonlinear tracking technique is used for angle

tracking of the gimbaled system in a missile seeker to demonstrate the effective-

ness of the developed technique. Three engagement scenarios, including fixed target,

non-maneuvering target, and maneuvering target are presented to demonstrate the

effectiveness of the developed technique.

Once the proposed algorithms have been developed and tested by software simu-

lation, the next step is to bridge the gap between software simulation and real world

applications. Here, the method of hardware in the loop simulation (HILS) is executed

by using an experimental setup based on a microcontroller board manufactured by

Zeltom Educational and Industrial Control System Company.

xiv



Chapter 1

Introduction

It is well known that the optimal tracking control problem has been the focus of

control systems community for several decades since it is usually encountered in real

world systems, such as missiles and spacecraft systems [36, 97, 108, 116], robot ma-

nipulators [50, 57, 93], mechanical systems [63], etc. Therefore, it is necessary and

important to investigate the optimal tracking control for linear and nonlinear systems.

In the case of infinite-horizon optimal tracking control, the system is not tracked until

the time reaches infinity (on large time), while for the finite case, the system must be

tracked to a reference trajectory for a finite duration of time [143]. Since many limita-

tions exist in traditional optimal tracking control approaches, such as plant inversion

[144] and linearization [37], it is necessary to design direct optimal tracking control

schemes for nonlinear systems. Numerous design methodologies exist for the control

design of nonlinear systems. One of the recently developed techniques for the optimal

control of nonlinear systems is the State Dependent Riccati Equation (SDRE).

1.1 Background

The advanced control theory concerned with multiple inputs and multiple outputs

(MIMO) is based on state variable representation in terms of a set of first-order

1



differential equations. Here, the system (plant) is characterized by state variables in

linear time-invariant form as

ẋ(t) = Ax(t) + Bu(t), (1.1.1)

y(t) = Cx(t) + Du(t), (1.1.2)

where dot denotes differentiation with respect to (w.r.t.) t, x(t), u(t), and y(t) are

n−, r−, and m− dimensional state, control, and output vectors respectively, and A

is n×n state, B is n× r input, C is m×n output, and D is m× r transfer matrices.

Similarly, a nonlinear dynamical system is characterized by

ẋ(t) = f(x(t),u(t), t), (1.1.3)

y(t) = g(x(t),u(t), t), (1.1.4)

where f and g are n− and m− dimensional vectors respectively.

Figure 1.1: Advanced Control Configuration

The advanced theory dictates that all the state variables should be fed back after

suitable weighting. We see from Fig.1.1 that in advanced control configuration, the

input u(t) to the plant is determined by the controller driven by system states x(t)

and reference signal r(t), all or most of the state variables are available for feedback

control, and it depends on well-established matrix theory, which is amenable for large

scale computer simulation [98].

Optimization is a very desirable feature in day-to-day life. The main objective
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of optimal control is to determine control signals that will cause a process (plant)

to satisfy some physical constraints and at the same time extremize (maximize and

minimize) a chosen performance criterion (performance index or cost function).

The formulation of optimal control problem requires

1. a mathematical description (or model) of the process to be controlled (generally

in state variable form),

2. a specification of the performance index, and

3. a statement of boundary conditions and the physical constraints on the states

and/or controls.

For the purpose of optimization, we describe a physical plant by a set of linear or

nonlinear differential or difference equations. For example, a linear time-invariant sys-

tem is described by the state and output relations (1.1.1) and (1.1.2) and a nonlinear

system described is by (1.1.3) and (1.1.4).

In modern control theory, the optimal control problem is to find a control which

causes the dynamical system to reach a target or follow a state variable (or trajectory)

and at the same time extremize a performance index. A performance index in general

form can be written as

J = x′(tf)Fx(tf ) +

∫ tf

t0

[x′(t)Qx(t) + u′(t)Ru(t)]dt, (1.1.5)

where, t0 is fixed or given initial time, tf is free (or unspecified in advance) final

time, x(tf) is a specified final state, F is a positive semi-definite matrix, x(t) is the

error between the desired and the actual values, Q is a weighting matrix, which is

positive semi-definite matrix, R is a positive definite matrix and prime (′) denotes the

transpose [5]. Note that the matrices Q and R may be time varying. The particular

form of performance index (1.1.5) is called quadratic form.
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Also, the performance index can be in the general (non-quadratic) form as

J = S(x(tf), tf) +

∫ tf

t0

V (x(t),u(t), t)dt, (1.1.6)

where, S(x(tf), tf) is called the terminal cost function; S(x(t),u(t), t) = x′(tf)Fx(tf )

and V (x(t),u(t), t) is called the integral cost function; V (x(t),u(t), t) = x′(t)Qx(t)+

u′(t)Ru(t) . There are many other forms of cost functions depending on our per-

formance specifications. However, the above mentioned performance indices (with

quadratic forms) lead to some very elegant results in optimal control systems [98].

1.2 Literature Survey–SDRE

The State Dependent Riccati Equation (SDRE) techniques have emerged as general

design methods that provide a systematic and effective means of designing nonlinear

controllers, observers and filters [21]. These methods overcome many of the difficul-

ties and limitations of existing techniques, and provide simple algorithms that have

been highly effective in a variety of practical and meaningful applications, e.g. mis-

siles, aircraft, unmanned aerial vehicles, satellites and spacecraft, ships, autonomous

underwater vehicles, automotive systems, robotics, process control, and biomedical

systems [23]. Practical SDRE contributions related to some of these applications can

be summarized in the following points

1.2.1 Missiles

The autopilot design of tail-controlled missile using output-feedback nonlinear H2

control was given in [95, 96]. The autopilot design for agile missiles using full-state in-

formation nonlinear H1 control was presented in [147]. In [32, 33], the autopilot design

for hybrid bank-to-turn and skid-to-turn air-to-air missile using integral servomecha-

nism tracking control was discussed. The autopilot design for a dual-controlled (tail

and canard) missiles using state-dependent weightings was given in [94]. In [145],
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the development of a novel method of adaptive nonsingular terminal sliding mode

control for a class of nonlinear systems subject to disturbances and uncertainties was

presented. The development of a standard method for a robust high-performance

three-axis nonlinear missile autopilot design was discussed in [22]. The development

of guidance law for acceleration-limited and impact-angle constrained trajectories was

given in [30, 112]. The fully integrated guidance and control design of agile missiles to

improve the mean and standard deviation of the final miss-distance against stressing

threats using both algebraic SDRE and differential SDRE schemes was illustrated

in [133]. The guidance filter design for a homing ballistic missile intercept problem

using passive and active sensor information of azimuth, elevation, and range was

given in [42]. In [90], the development of a robust guidance law for a missile under-

going inaccurate prediction of target maneuver was presented. The development of

a novel robust second-order sliding mode control law using a back-stepping concept

was discussed in [53].

1.2.2 Aircraft

The guidance control of a fighter aircraft during a high angle of attack was pre-

sented in [10]. The flutter suppression of aeroelastic wing sections using full-state

or partial-state feedback was given in [15, 122, 129]. In [87], the enhancement of

the performance of an aircraft flight control system by augmenting it with a SDRE

controller implemented in a parallel fashion was discussed. The extension of the

analytical multi-objective parameter synthesis method to nonlinear systems via the

state-dependent coefficients parameterization method in combination with the reced-

ing horizon control technique was given in [45].

1.2.3 Unmanned Aerial Vehicles (UAV)

The trajectory tracking control of a small helicopter and a micro-ducted-fan rotor

craft was given in [67]. The attitude and velocity control of a quad rotor UAV for
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near-area surveillance and search-and-rescue missions was illustrated in [140]. In

[46], the development of an onboard adaptive and robust flight control system that

improves control, stability, and survivability of a small unmanned aerial system in

off-nominal or out-of-envelope conditions was presented. In [16], the control and

real-time flight testing of small autonomous helicopter for autonomous operations

through a broad spectrum of maneuvers was given. The Global Positioning System

sensor fusion based on SDRE nonlinear filtering for the UAV localization problem

was discussed in [103]. The non-linear filter architecture to perform fault detection

and isolation on the sensor gyros and accelerometers was given in [139].

1.2.4 Satellites and Spacecraft

The application of a nonlinear control technique for coupled orbital and attitude

relative motion of formation flying was discussed in [92]. The position and attitude

control of rigid spacecraft [51, 107, 126]. The hyper-sonic guidance of space vehicles

during the mid-course phase of flight was given in [34]. In [7, 54], the angular-

rate estimation of satellites using either vector measurements obtained from sensors

or delayed quaternion measurements obtained from a cluster of star trackers was

presented. The formation flying control of multiple satellites and spacecraft was

given in [25]. The development of a tracking control algorithm with a nonlinear

compensator for the gravity terms acting on the flight equations was discussed in

[110].

1.2.5 Ships

The observer design for dynamic positioning of ships to obtain accurate estimates

of the low frequency ship motions was discussed in [125]. The autopilot design for

real-time way-point guidance of constrained nonlinear oil tanker motion in restricted

waterways was presented in [20].
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1.2.6 Autonomous Underwater Vehicles

The fault-tolerant and robust steering motion and dive-plane control was given in

[100]. The integrated design of a real-time obstacle avoidance system was presented

in [131]. In [61], the optimal and robust motion control for homing and docking tasks

was discussed.

1.2.7 Automotive Systems

The stabilization of the lateral motion dynamics of a vehicle model was given in [2, 88].

The obstacle-avoiding feed forward and feedback path-tracking steering control for a

vehicle using sensitivity-based gain parameterization of controller gains was illustrated

in [138]. The analysis of non-linear autonomous systems using eigenstructure-based

analysis through the Pseudo-linear (PL) form representation was presented in [49].

1.2.8 Robotics

The manipulator path control of a vertically articulated five-axis robot with experi-

mental validation was presented in [59]. The real-time experimental control of two-

link under actuated nonlinear non minimum-phase robot dynamics was discussed in

[40]. The experimental control of a planar three link manipulator with two flexible

links was given in [35]. In [117], the robust full-state-feedback nonlinear H1 control of

the tip position of a single-link flexible manipulator was illustrated. The locomotion

control with experimental validation of a three-link snakelike robot based on friction

force, under holonomic and nonholonomic constraints was given in [146]. The model-

ing and controlling the tip position of a one-link flexible manipulator was discussed in

[118]. The optimal control law for the optimization of a class of nonlinear singularly

perturbed systems was presented in [48]
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1.2.9 Process Control

The temperature estimation in rapid thermal processing systems for performing ther-

mal manufacturing operations involved in integrated circuit fabrication was given in

[13]. The speed sensor-less observer design for current and voltage source-inverter-

fed induction motor drives for separate state and parameter estimations of rotor flux

vector and load torque parameters was presented in [14, 106]. The control of the

nonlinear non-minimum phase dynamics of a continuously stirred tank reactor was

discussed in [31]. In [71], the regulation of the growth of thin films in a high-pressure

chemical vapor deposition thin-film reactor for real-time applications in the micro-

electronic industry was discussed. The control of the tandem cold rolling process of

the metal strip with improved tolerance in mill exit thickness was given in [109].

1.2.10 Biological and Biomedical Systems

The control of the artificial human pancreas was presented in [107]. In [9], the human

immunodeficiency virus feedback control for combined drug and immune response

using full state feedback as well as partial-state measurements was discussed. The

optimal administration of chemotherapy in cancer treatment with combined control

and state was given [60].

1.2.11 Other Nonlinear Studies

The adaptive SDRE control design was presented in [85, 86, 87]. The design of control

systems with parasitic effects of friction and backlash was discussed in [43]. In [105],

the robust global delay stabilizations of nonlinear time-delay systems was given. The

active structural control of slewing beams was presented in [130]. The synchronization

of nonlinear chaotic systems for secure communications by chaotic masking was given

in [3, 62]. In [82], the data assimilation based on the global ionospherethermosphere

model to predict space weather.
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1.3 Dissertation Goal and Contributions

The main goal of this dissertation is to advance the state of the art in nonlinear

finite-horizon tracking control based on the SDRE. In the process of achieving that

main goal, the following contributions were made:

1. An efficient online technique used for nonlinear stochastic regulator and tracking

problems is proposed. The idea of the proposed technique is to integrate the

Kalman filter algorithm and the SDRE technique. Kalman filter is used to

estimate the unmeasured states which are corrupted with noises in the nonlinear

model. Unlike the ordinary methods which deal with the linearized system, this

technique estimates the unmeasured states of the nonlinear system directly.

2. A novel online technique used for finite-horizon nonlinear tracking and regula-

tion deterministic systems is developed. This technique is based on change of

variables that converts the differential Riccati equation to a linear Lyapunov

equation. During online implementation, the Lyapunov equation is solved in a

closed form at each given time step.

3. A new optimal tracking and regulation technique used for finite-horizon nonlin-

ear stochastic systems are developed. This technique based on using the Kalman

filter after converting the nonlinear differential Riccati equation to a linear Lya-

punov equation. Kalman filter is used to estimate the unmeasured states of the

nonlinear model. The optimal control problem of the nonlinear system is solved

by using finite-horizon SDRE algorithm, which makes this technique effective

for a wide range of operating points.

4. The majority of homing guided missiles use gimbaled seekers. The control tech-

nique used for the gimbal system on a tactical missile must provide fast and

precise tracking of relative error signals. Poor performance during engagement

will result in large miss distances which may lead to low probability of mission

success. The dynamical equations describing the gimbal system under consid-

eration are highly nonlinear. In order to accurately calculate the missile-target
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line of site (LOS) angle and its rate, accurate nonlinear control of the motion

of the gimbaled seeker through the attached DC motors is required. The linear

control techniques become inadequate and it becomes necessary to use some

other nonlinear control techniques. The new direction of research on finite-

horizon nonlinear tracking via SDRE is an appropriate solution.

5. Traditional software-based simulation has the disadvantage of being unable to

accurately imitate real-time operational environment. One way to bridge the

gap between simulation and real-time conditions is the Hardware in the Loop

Simulation (HILS). The HILS is a necessary step towards research and devel-

opment of engineering systems and in particular in the control systems. The

problem of finite-horizon position control of a permanent magnet DC motor

based on the nonlinear system dynamics is addressed. The experimental setup

consists of a Hilink microcontroller board manufactured by Zeltom Educational

and Industrial Control System Company, a corresponding SIMULINK c©library

for MATLAB c©and SIMULINK c©, DC motor with encoder, and hall effect cur-

rent sensor.

1.4 Dissertation Outline

This dissertation is composed of eight chapters. Chapter 1 serves as an introduction.

The background, literature survey, dissertation goal, and the contributions of the work

are provided in this chapter. Chapter 2 presents the infinite-horizon nonlinear track-

ing and regulation using SDRE. Chapter 3 introduces the infinite-horizon nonlinear

tracking and regulating for stochastic systems. The development of the finite-horizon

nonlinear tracking and regulating for deterministic systems is presented in Chap-

ter 4. The finite-horizon nonlinear tracking and regulating for stochastic systems

are discussed in Chapter 5. The simulation results for a realistic gimbaled system

with three engagement scenarios, including fixed target, non-maneuvering target, and

maneuvering target using the finite-horizon nonlinear control via SDRE are shown
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in Chapter 6. Chapter 7 focuses on the experimental verification of a practical

system, a DC motor position control using HILINK microcontroller board and Mat-

lab/Simulink. Finally, conclusions and future directions of research are detailed in

Chapter 8.

Portions of the research contributions of this dissertation have so far been pub-

lished in one book chapter [72], two international peer-reviewed conference papers

[73, 74], and six international peer-reviewed conference papers have been accepted

for publication [75, 76, 77, 78, 79, 80] as follows:

1. Khamis, A.; Zydek, D.; Borowik, G.; Naidu, D. S., “Control System Design

Based on Modern Embedded Systems,” In Computer Aided Systems Theory ,

Springer Berlin Heidelberg, 2013 [72].

2. Khamis, A.; Naidu, D. S., “Nonlinear Optimal Tracking Using Finite-Horizon

State Dependent Riccati Equation (SDRE)”, Proceedings of the 4th Interna-

tional Conference on Circuits, Systems, Control, Signals (WSEAS), Valencia,

Spain, August 6–8, 2013, pp. 37–42 [74].

3. Khamis, A.; Zydek, D.; Borowik, G.; Naidu, D. S., “Control System Design

Based on Modern Embedded Systems,” 14th International Workshop on Com-

puter Aided Systems Theory - EUROCAST 2013, Las Palmas de Gran Canaria,

Spain, p. 346-347, 2013 [73].

4. Khamis, A.; Naidu, D. S., “Nonlinear Optimal Tracking With Incomplete

State Information Using Finite-Horizon State Dependent Riccati Equation (SDRE)”,

American Control Conference (2014 ACC), Portland, Oregon, USA, 2014, ac-

cepted [78].

5. Khamis, A.; Naidu, D. S.; Zydek, D., “Nonlinear Optimal Control With In-

complete State Information Using State Dependent Riccati Equation (SDRE),”

23rd International Conference On Systems Engineering (ICSEng 2014), Las Ve-

gas, NV, USA, accepted [79].
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6. Khamis, A.; Naidu, D. S.; Zydek, D., “Nonlinear Position Control of DC

motor Using Finite-Horizon State Dependent Riccati Equation (SDRE),” 23rd

International Conference On Systems Engineering (ICSEng 2014), Las Vegas,

NV, USA, accepted [80].

7. Khamis, A.; Naidu, D. S., “Nonlinear Optimal Stochastic Regulator Using

Finite-Horizon State Dependent Riccati Equation”, IEEE-CYBER 2014, Hong

Kong, China, June 4-7, 2014, accepted [76].

8. Khamis, A.;Ahmed M. Kamel; Naidu, D. S., “Nonlinear Optimal Tracking For

Missile Gimbaled Seeker Using Finite-Horizon State Dependent Riccati Equa-

tion”, IEEE-CYBER 2014, Hong Kong, China, June 4-7, 2014, accepted [77].

9. Khamis, A.; Naidu, D. S., “Experimental Validation for Real Time Control

of DC Motor Using Novel Finite-Horizon Optimal Technique”, IEEE-CYBER

2014, Hong Kong, China, June 4-7, 2014, accepted [75].
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Chapter 2

Infinite-Horizon State Dependent

Riccati Equation (SDRE) for

Deterministic Systems

The need to improve performance in controlled systems leads to more and more

accurate modeling of dynamical systems or plants. However, if a model is a good

representation of the real system over a wide range operating points, it is most often

nonlinear. Therefore, the ordinarily used linear control techniques are inadequate and

it becomes necessary to use some other nonlinear control techniques. The competitive

era of technological change has motivated the rapid development of nonlinear control

theory for application to challenging, complex dynamical real-world problems [19].

There exist many nonlinear control design techniques, each has benefits and weak-

nesses. Most of them are limited in range of applicability, and use of certain nonlinear

control technique for a specific system usually demands choosing between different

factors, e.g., performance, robustness, optimality, and cost. Some of the well-known

nonlinear control techniques are feedback linearization, adaptive control, nonlinear

predictive control, sliding mode control, and approximating sequence of Riccati Equa-
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tions. One of the highly promising and rapidly emerging techniques for nonlinear

optimal controllers designing is the State Dependent Riccati Equation (SDRE) tech-

nique. Although there exist a number of other methods for stabilization of nonlinear

systems, the SDRE approach involves imitating standard linear quadratic regulator

(LQR) design for linear systems. The SDRE based techniques are among the few

successful approaches that have important properties, such as applicability to a large

class of nonlinear systems, allowing the controller designer to make a tradeoff between

control effort and state errors, and its systematic formulation [23].

2.1 Algebraic State Dependent Riccati Equation

Overview

State Dependent Riccati Equation (SDRE), also referred to as the Frozen Riccati

Equation (FRE) [38], was first proposed by Pearson (1962), in addressing a state de-

pendent formulation of nonlinear time-varying systems for nonlinear optimal control

problems. Pearson suggested treating it as an instantaneously linear time invariant

(LTI) system to approximate the nonlinear optimal control problem at each instant of

time. Later, SDRE was expanded by Wernli and Cook (1975), and the intense start

of real interest in the field did not come until the late 1990’s when several studies

were done by Mracek and Cloutier (1998) [32].

The SDRE has become a very attractive tool for the systematic design of non-

linear controllers, very common within the control community over the last decade,

providing an extremely effective algorithm for nonlinear feedback control design by

allowing nonlinearities in the system states while additionally offering great design

flexibility through design matrices [19].

The SDRE method involves factorization of the nonlinear dynamics into product

of a matrix-valued function (which depends on the states) and state vector. Thus, the

SDRE algorithm captures the nonlinearities of the system, transforming the original
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nonlinear system to a linear-like structure with state dependent coefficient (SDC)

matrices, and minimizing a nonquadratic performance index with a quadratic-like

structure [23]. The Riccati equation using the SDC matrices is then solved online

to give the sub-optimum control law. Moreover, with enough sample points, the

suboptimal solution can be made to be very close to the optimal solution of the

original nonlinear system. The coefficients of this Riccati equation vary with each

point in state space. The algorithm thus involves solving, at a given point in state

space, a SDRE whose pointwise stabilizing solution during state evolution yields the

SDRE nonlinear feedback control law.

As the SDRE depends only on the current state, the computation can be carried

out online, in which case the SDRE is defined along the state trajectory. In addition,

a primary advantage offered by SDRE to the control designer is the opportunity to

make tradeoffs between control effort and state errors by tuning the SDC.

The process of factorizing a nonlinear system into a linear-like structure that

contains SDC matrices is called extended linearization. It’s well known that for

single- variable (scalar) systems, the SDC parameterization is unique, On the other

hand, in the multi variable case, the SDC parameterization is not unique. In fact,

there are an infinite number of ways to bring a nonlinear system to SDC form.

For example, consider the two-dimensional nonlinear system in the form

ẋ(t) = f(x) + B(x)u(t), (2.1.1)

where f(x) = [x2, x
3
1]
′. We can write this system in the SDC form as

ẋ(t) = A(x)x(t) + B(x)u(t), (2.1.2)

with the obvious SDC parameterization A1(x) =





0 1

x2
1 0



. However, we can also

find another SDC parameterizations:
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A(x) = A2(x) =





−x2 1 + x1

x2
1 0



, or A(x) = A3(x) =





x2

x1

0

x2
1 0



.

Because of the many available SDC parameterizations, as we design the optimal

control law we must choose the one that is most appropriate for the system and

control objectives of interest. To choose the one of the correct parameterizations for

A(x) and B(x), one should consider that the matrices A(x) and B(x) must be chosen

in such a way that the nonlinear system is controllable or at least stabilizable.

It is well known that the solution of the SDRE cannot be found analytically, except

for very limited nonlinear systems. It is given that Taylor series and interpolation

methods can be used to approximate the offline solution of the SDRE. However, it is

still hard to solve the SDRE with these methods when the dynamics of the nonlinear

system become very complex or of high-order.

2.2 Infinite-Horizon Regulation for Deterministic

Nonlinear Systems

Consider the continuous-time, deterministic, full-state feedback, infinite-time horizon,

nonlinear optimal regulation problem, where the system is having dynamics

ẋ(t) = f(x) + B(x)u(t), (2.2.1)

with state vector x(t) ∈ <n and (unconstrained) input vector u(t) ∈ <m,such that

f : <n → <n and B : <n → <nxm, with B(x) 6= 0∀ x(t). In this context, the mini-

mization of an infinite-time horizon performance criterion with a convex integrand,

nonquadratic in x but quadratic in u, is considered, given by

J(x,u) =
1

2

∫ ∞

o

[x′(t)Q(x)x(t) + u′(t)R(x)u(t)] dt. (2.2.2)
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The state and input weighting matrices (design parameters) are assumed to be state-

dependent, such that Q(x) : <n → <nxn and R(x) : <n → <mxm. Also Q(x) is a sym-

metric positive semi-definite matrix, and R(x) is a symmetric positive definite matrix.

Moreover, x′(t)Q(x)x(t) is a measure of state-error accuracy and u′(t)R(x)u(t) is a

measure of control effort [23].

Using SDC parameterization [32], the nonlinear system dynamics (2.2.1) can be

converted into a linear-like structure which contains SDC matrices. Under the as-

sumptions f(0) = 0, a continuous nonlinear matrix-valued function A(x) exists such

that

f(x) = A(x)x(t), (2.2.3)

where A(x) ∈ <nxn is found by mathematical factorization and is non-unique when

n > 1. Therefore, the nonlinear system (2.2.1) can now be represented in the SDC

form

ẋ(t) = A(x)x(t) + B(x)u(t), x(0) = x0, (2.2.4)

which has a linear structure with SDC matrices A(x) and B(x).

2.2.1 Algebraic SDRE Regulation Controller Structure

The SDRE procedure uses extended linearization as the basic design concept in for-

mulating the nonlinear optimal control problem (2.2.1) and (2.2.2). The basic linear

control synthesis method in this case is the LQR method [4, 6]. Motivated by the

LQR problem, which is characterized by an algebraic Riccati Equation (ARE), the

algebraic SDRE feedback control is an extended linearization control method that

provides a similar approach to the nonlinear regulation problem for the input-affine

system (2.2.1) with cost functional (2.2.2). First, the following conditions must be

met before starting the controller design [21]:
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Condition 1: f(x) is a continuously differentiable vector-valued function of x(t).

Condition 2: The origin x = 0 is an equilibrium point of the system with u = 0.

Condition 3: Q(x) is a symmetric positive semi-definite matrix, and R(x) is a sym-

metric positive definite matrix.

Condition 4: A(x) and B(x) must be chosen in such a way that the nonlinear sys-

tem is controllable or at least stabilizable.

By mimicking the LQR formulation, the optimal state-feedback controller is ob-

tained in the form

u(x) = −K(x)x(t), (2.2.5)

such that the nonlinear state-feedback gain K(x) for (approximately) minimizing

(2.2.2) becomes

K(x) = R−1(x)B′(x)P(x), (2.2.6)

and hence the state-feedback controller can be written as

u(x) = −R−1(x)B′(x)P(x)x(t). (2.2.7)

Here, P(x) is the unique, symmetric, positive-definite solution of the continuous-time

algebraic SDRE

P(x)A(x) + A′(x)P(x)− P(x)B(x)R−1(x)B′(x)P(x) + Q(x) = 0. (2.2.8)

The resulting algebraic SDRE-controlled trajectory (state) is the solution of the
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closed-loop dynamics

ẋ(t) = [A(x)− B(x)R−1(x)B′(x)P(x)]x(t). (2.2.9)

The algebraic SDRE, strictly speaking it could be called State Dependent Algebraic

Riccati Equation (SDARE), solution to the infinite-time horizon autonomous nonlin-

ear regulator problem (2.2.1) and (2.2.2) is a true generalization of the infinite-time

horizon time-invariant LQR problem, where all of the coefficient matrices are state-

dependent. At each instant, the method treats the SDC matrices as being constant,

and computes a control action by solving an LQ optimal control problem. The main

advantage of the algebraic SDRE algorithm is its simplicity and its obvious efficiency,

since there is no attempt to solve the Hamilton Jacobi Bellman (HJB) equation.

That’s applicable for nonlinear optimal control problems. When the coefficient and

weighting matrices are constant, the nonlinear regulator problem converts to the LQR

problem and the algebraic SDRE control method converts to the steady-state linear

regulator.

Fig.2.1 shows a flow chart of the infinite-horizon algebraic SDRE regulator. At

each sample time, the following procedure is accomplished. First, the current state

vector x(t) is used to calculate numerical values for A(x) and B(x). Then, using the

LQR equations, P(x) and K(x) are calculated. Control input u(x) is then calcu-

lated and applied to the system to calculate the state of the next step of time. This

LQR procedure is then repeated at the next sample time. For the algebraic SDRE

technique, the ARE is solved at every sample time for each new value of A(x) and

B(x) at each step of time. This procedure views the nonlinear system to be approxi-

mated as a series of linear systems. Therefore, shorter time increments increase the

accuracy of the control law, because the change in nonlinear dynamics over shorter

time increments is more like a linear change. Because of its approximating nature,

the algebraic SDRE technique is considered a suboptimal solution. However, with

the proper choices for the A(x) and B(x) matrices, and with the proper amount of

sample times, the algebraic SDRE technique can provide a very adequate optimal

19



Figure 2.1: Flow Chart of Infinite-Horizon Algebraic SDRE Regulator

solution.

2.2.2 Infinite-Horizon Algebraic SDRE Regulation Simula-

tion: Van der Pol’s Oscillator

This section presents simulations with the infinite-horizon optimal regulator controller

for Van der Pol’s oscillator using algebraic SDRE. Consider the Van der Pol’s oscillator

nonlinear equations

ẋ1 = x2, (2.2.10)

ẋ2 = 1 − x2
1x2 − x1 + u, (2.2.11)

with the equilibrium point of this system at x0 = (0, 0)′. Note that x1 = x1(t) and

x2 = x2(t).
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The given nonlinear system can be written in the SDC form

A =





0 1

−1 1 − x2
1



 , B =





0

1



 , (2.2.12)

and the weighted matrices

R = [1] , Q =





50 0

0 50



 . (2.2.13)

The simulations are performed for a time interval of 50 seconds with 500 time steps,

the resulting states trajectories is shown in Fig. 2.2 and the optimal control is shown

in Fig. 2.3. In Fig. 2.2, the solid line denotes state x1, the doted line denotes state x2

trajectory. Fig. 2.2 clearly illustrates of the infinite-horizon algebraic SDRE nonlinear

regulator algorithm.
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Figure 2.2: Optimal States for the Van der Pol’s Oscillator
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Figure 2.3: Optimal Control for the Van der Pol’s Oscillator

2.3 Infinite-Horizon Tracking for Deterministic Non-

linear Systems

Consider the continuous-time, deterministic, full-state feedback, infinite-time horizon,

nonlinear optimal tracking problem, where the system is having dynamics

ẋ(t) = f(x) + B(x)u(t), (2.3.1)

y(t) = h(x), (2.3.2)

with state vector x(t) ∈ <n, (unconstrained) input vector u(t) ∈ <m, and the output

y(t) ∈ <p. Such that f(x) : <n → <n, B(x) : <n → <nxm, and h(x) : <n → <pxn.

That nonlinear system can be expressed in a state-dependent like linear form, as:

ẋ(t) = A(x)x(t) + B(x)u(t), (2.3.3)

y(t) = C(x)x(t), (2.3.4)

where f(x) = A(x)x(t), h(x) = C(x)x(t). A(x) ∈ <nxn, B(x) ∈ <nxm, and
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C(x) ∈ <pxn.

Let z(t) ∈ <p be the desired output. The goal is to control the system (2.3.3, 2.3.4) so

that the output y(t) follows, as close as possible, the commanded output z(t). This

objective can be accomplished by using a state feedback control law that minimizes

a cost function [98]:

J(x,u) =
1

2

∫ ∞

0

[e′(t)Q(x)e(t) + u′(x)R(x)u(x)] dt, (2.3.5)

where e(t) = z(t) − y(t), Q(x) is a symmetric positive semi-definite matrix, and R(x)

is a symmetric positive definite matrix. e′(t)Q(x)e(t) is a measure of tracking error

accuracy and u′(x)R(x)u(x) is a measure of control effort [23].

2.3.1 Algebraic SDRE Tracking Controller Structure

The algebraic SDRE, strictly speaking it could be called State Dependent Algebraic

Riccati Equation (SDARE), control theory has only been developed for the infinite-

time non-linear optimal regulation (stabilization) problem, for which z(t) = 0 and

C(x) = Inxn. This is because the method requires solving the infinite-time algebraic

Riccati equation. Unfortunately, the developed theory of the infinite-time LQ opti-

mal tracking problem has hindered its application for solving non-linear trajectory

tracking problems, unless an integral servomechanism is used [23], which increases the

number of states and thus the computation time required for solving algebraic Riccati

equations. Regardless of the developed theory of infinite-time LQ optimal tracking

control, a good approximation can be developed for excessively large terminal time

[20]. The derived results are approximate in nature and are valid for very large values

of the terminal time. First, similar to Section 2.2.1, the following conditions must be

met before starting the controller design [21]:

Condition 1: f(x) is a continuously differentiable vector-valued function of x(t).

Condition 2: The origin x = 0 is an equilibrium point of the system with u = 0.

Condition 3: Q(x) is a symmetric positive semi-definite matrix, and R(x) is a sym-
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metric positive definite matrix.

Condition 4: A(x) and B(x) must be chosen in such a way that the nonlinear sys-

tem is controllable or at least stabilizable. A(x) and C(x) must be chosen in such a

way that the nonlinear system is observable or at least detectable.

By following the LQR formulation, the state-feedback controller is obtained in the

form

u(x) = −R−1(x)B′(x)[P(x)x(t)− g(x)]. (2.3.6)

P(x) is a positive-definite solution of the continuous-time algebraic SDRE

P(x)A(x) + A′(x)P(x)−P(x)B(x)R−1(x)B′(x)P(x) + C′(x)Q(x)C(x) = 0, (2.3.7)

and g(x) is a solution of the continuous-time state dependent non-homogeneous

equation

g(x) = −
(

[A(x) −B(x)R−1(x)B′(x)P(x)]′
)−1

C′(x)Q(x)z(x). (2.3.8)

The resulting algebraic SDRE-derived trajectory is the solution of the closed-loop

dynamics

ẋ(t) = [A(x) −B(x)R−1(x)B′(x)P(x)]x(t) + B(x)R−1(x)B′(x)g(x). (2.3.9)

Fig.2.4 shows a flow chart of the infinite-horizon algebraic SDRE tracking. At each

sample time, the following procedure is accomplished. First, the current state vector

x(t) is used to calculate numerical values for A(x), B(x), and C(x). Then, using the

LQT equations, P(x) and g(x) are calculated. Control input u(x) is then calculated

and applied to the system. This procedure is then repeated at the next sample time.
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Figure 2.4: Flow Chart of Infinite-Horizon Algebraic SDRE Tracking

2.3.2 Infinite-Horizon Algebraic SDRE Tracking Simulation:

Forced Damped Pendulum

This section presents simulations with the infinite-time horizon optimal tracking con-

troller for forced damped pendulum with different reference (commanded) outputs.

The dynamic equation for forced damped pendulum is:

ml2θ̈ = −mglsin(θ)− kθ̇ + T, (2.3.10)

where, θ is the angle of pendulum, l is the length of rod, m is the mass of pendulum,

g is the gravitational constant, k is the damping (friction) constant, T is the driving

torque.
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The system nonlinear state equations can be written in the form:

ẋ1 = x2, (2.3.11)

ẋ2 = −
g

l
sin(x1) −

k

ml2
x2 +

1

ml2
u, (2.3.12)

y = x1, (2.3.13)

where: θ = x1 , θ̇ = x2 , and T = u. Or in state dependent form:





ẋ1

ẋ2



 =





0 1

−4.9sin(x1)
x1

−0.25









x1

x2



+





0

0.25



u, (2.3.14)

y(t) =
[

1 0
]





x1

x2



 , (2.3.15)

where A =





0 1

−4.9sin(x1)/x1 −0.25



, B =





0

0.25



 , C =
[

1 0
]

.

Let Us select weighted matrices as

Q = diag(100, 0), R = 0.01, (2.3.16)

and, let the reference output as

z(t) = t3 − t+ 5. (2.3.17)

The simulations are performed for 500 time steps and the resulting output trajectory

is shown in Fig. 2.5, and the optimal control is shown in Fig. 2.6. In Fig. 2.5,

the solid line denotes the actual output trajectory and the doted line denotes the

reference output trajectory. Comparing trajectories in Fig. 2.5, it’s clear that the

infinite-horizon algebraic SDRE nonlinear tracking algorithm gives very good results
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as the actual optimal output is making very good tracking to the reference output.
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Figure 2.5: Optimal Output for Forced Damped Pendulum with Cubic Polynomial
Reference
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Figure 2.6: Optimal Control for Forced Damped Pendulum with Cubic Polynomial
Reference
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2.4 Conclusions

The Algebraic State Dependent Riccati Equation (SDRE) provide an extremely effec-

tive algorithm for nonlinear feedback control design by allowing nonlinearities in the

system states while additionally offering great design flexibility through design ma-

trices. The algebraic SDRE method involves factorization of the nonlinear dynamics

into product of State Dependent Coefficient (SDC) matrices and state vector. Thus,

the algebraic SDRE algorithm captures the nonlinearities of the system, transform-

ing the original nonlinear system to a linear-like structure with SDC matrices, and

minimizing a non-quadratic performance index with a quadratic-like structure. The

Algebraic Riccati Equation (ARE) using the SDC matrices is then solved online to

give the sub optimum control law, and with enough time sample points, the subop-

timal solution can be made to be very close to optimal solution. As the algebraic

SDRE depends only on the current state, the computation can be carried out online,

in which case the algebraic SDRE is defined along the state trajectory. In addition,

the main advantage of the algebraic SDRE is the flexibility to make tradeoffs between

control effort and state errors by tuning the SDC.
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Chapter 3

Infinite-Horizon Algebraic State

Dependent Riccati Equation

(SDRE) for Stochastic Systems

The estimation of states in a system is an essential problem for control. The estimated

states might be needed to control the system, e.g. the aerospace engineer needs to

estimate the velocity of a satellite in order to control its orbit, or the estimated state

itself is the point of interest, e.g. to estimate the position of a satellite in order

to schedule the future mission of that satellite [121]. Kalman filter is a well-known

effective state estimator that estimates the unmeasured states corrupted with noise.

The standard Kalman filter is limited only to linear systems. However, the Extended

Kalman filter (EKF) estimates the linearized (using Taylor series) states of the original

nonlinear system.

The need to improve performance in control systems leads to more accurate modeling.

However, if a model is a good representation of the real system over a wide range

of operating points, it is most often nonlinear. Therefore, the ordinarily used linear

filter techniques become inadequate and it becomes necessary to explore some other
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nonlinear filter techniques. Most of nonlinear filters deal with the nonlinear system

after linearization, i.e first to linearize the nonlinear system in a small region around

the operating point (using Taylor series), then to estimate the unmeasured linearized

states. The key assumption is that the range of operation is small for the linearized

model to be valid. As a result, the filter will only be effective in the small vicinity

of the operating points, and the accuracy of this technique will decrease for large

operating range of nonlinear systems [24].

3.1 Standard Kalman Filter

The Kalman filter is basically an optimal state estimator which uses the input and

measured output corrupted with noise and minimizes the mean-squared error between

the true value and estimated value of the state of a stochastic system composed of a

process model and measurement model subjected to process and measurement noises,

respectively. We first focus on the development of the continuous-time Kalman filter

for linear systems subject to plant and measurement noises.

Consider the linear, continuous-time, stochastic system with dynamic model:

ẋ(t) = A(t)x(t) + B(t)u(t) + Bw(t)w(t), (3.1.1)

y(t) = C(t)x(t) + v(t), (3.1.2)

where, w(t) and v(t) are process, and measurement (white, Gaussian) random noises

with zero mean (i.e., w̄(t) = v̄(t) = 0) and covariances Qw(t) and Rv(t), respectively,

and assumed to be uncorrelated ( see Fig. 3.1).

The estimated state x̂(t) is given by

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + Ke(t) [y(t)− C(t)x̂(t)] ; (3.1.3)

˙̂x(t) = [A(t) −Ke(t)C(t)] x̂(t) + B(t)u(t) + Ke(t)y(t), (3.1.4)

30



Process Noise Measurement Noise

u(t) x(t) y(t)Dynamic/Process
Model

Measurement
Model

w(t) v(t)

PLANT

KALMAN FILTER

Ù
x(t)

Figure 3.1: Summarized Linear Continuous-Time Kalman Filter

where, Ke(t) is the estimator gain, x̂(t) is the state estimate with initial value

E{x(t = 0)} = x̄(t0) = x̂(t0). (3.1.5)

E stands for expected, average or mean value and considered intuitively equal to the

estimate.

Let us define the error e(t) between the true or actual state x(t) and the state estimate

x̂(t) as

e(t) = x(t)− x̂(t), (3.1.6)

ė(t) = ẋ(t)− ˙̂x(t). (3.1.7)

Substituting (3.1.1) and (3.1.4) in (3.1.7)

ė(t) = A(t)e(t) + Ke(t)C(t)e(t) + Bw(t)w(t) −Ke(t)v(t); (3.1.8)

ė(t) = [A(t)− Ke(t)C(t)]e(t) + Bwk(t)zwk(t), (3.1.9)

where

Bwk(t) = [Bw(t) − Ke(t)], zwk = [w(t) v(t)]′. (3.1.10)
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Using the results from [120] on propagation of state vector

ẋ(t) = A(t)x(t) + B(t)u(t) + Bw(t)w(t), (3.1.11)

and the corresponding state estimate error covariance Pe(t) can be calculated from

Ṗe(t) = A(t)Pe(t) + Pe(t)A
′(t) + Bw(t)Qw(t)B′

w(t). (3.1.12)

Now, using the result (3.1.12) for the error dynamics (3.1.9)

Ṗe(t) = [A(t) − Ke(t)C(t)]Pe(t) + Pe(t) [A(t) − Ke(t)C(t)]
′

+[Bw(t) −Ke(t)]





Qw(t)

Rv(t)



 [Bw(t) −Ke(t)]
′; (3.1.13)

Ṗe(t) = [A(t) − Ke(t)C(t)]Pe(t) + Pe(t) [A(t) − Ke(t)C(t)]
′

+[Bw(t)Qw(t)B′
w(t) + Ke(t)Rv(t)K

′
e(t), (3.1.14)

where, Pe = Pe(t) = E{[x(t)− x̂(t)] [x(t)− x̂(t)]′} is to be solved in forward direction

of time with initial condition

Pe0 = Pe(t0) = E{[x(t0) − x̂(t0)] [x(t0) − x̂(t0)]
′
}. (3.1.15)

We have the relation on Ke(t) for minimum error variance as

Ke(t) = Pe(t)C
′(t)R−1

v (t). (3.1.16)
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Using the optimal Kalman gain (3.1.16) in the covariance relation (3.1.14), we get

Ṗe(t) = A(t)Pe(t) + Pe(t)A
′(t)− Pe(t)C

′(t)R−1
v (t)C(t)Pe(t)

+Bw(t),Qw(t)B′
w(t), (3.1.17)

with initial condition Pe(t = 0) = Pe0.

This is called the continuous-time differential Riccati equation (CDRE) arising in

optimal state estimation. Fig. 3.2 shows a structure of the detailed standard linear

continuous-time Kalman filter.

3.2 Infinite-Horizon Regulator for Nonlinear Stochas-

tic Systems

3.2.1 Optimal Estimation

Let us suppose that the entire state x(t) is not available, but only the output y(t)

is measurable. For the sake of convenience we reproduce the nonlinear system with

noises in state dependent form

ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t), (3.2.1)

y(t) = C(x)x(t) + v(t), (3.2.2)

where, w(t) and v(t) are process, and measurement (white, Gaussian, zero mean)

random noises, respectively.

In order to find the best estimate x̂(t) and the corresponding state estimator error

covariance matrix Pe(x̂, t), we use the results of Section 3.1. At each time step, the
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Figure 3.2: Detailed Linear Continuous-Time Kalman Filter

filter (estimate) equations are

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)−C(x̂)x̂(t)]; (3.2.3)

x̂(t0) = x̄(t0),
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where, Ke(x̂, t), the optimal Kalman estimator (filter) gain, is obtained as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t), (3.2.4)

and Pe(x̂, t) is the solution of the matrix algebraic Riccati equation

0 = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)

−Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (3.2.5)

where Pe(x̂, t0) = Pe0.

Note that we used subscript e for matrices Pe and Ke above to denote that they

refer to the estimation problem and we designate the matrices Pc and Kc with the

subscript c to denote that they refer to the control problem in stochastic control

systems. The minimization of J is equivalent to minimization of

Ja(x, u) = E

{

1

2

∫ ∞

o

[x̂′(t)Q(x̂)x̂(t) + u′(x̂, t)R(x̂)u(x̂, t)dt

}

. (3.2.6)

3.2.2 Optimal Regulation

At each time step, using the results of nonlinear regulator obtained in Section 2.2.1

(except that the state is now the optimal estimate x̂(t)) we get

u(x̂, t) = −R−1(x̂)B′(x̂)Pc(x̂, t)x̂(t), (3.2.7)
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or, in terms of the optimal feedback control gain Kc(x̂, t)

u(x̂, t) = −Kc(x̂, t)x̂(t), (3.2.8)

where, Kc(x̂, t) = R−1(x̂)B′(x̂)Pc(x̂, t), is the Kalman (controller) gain, and Pc(x̂, t)

is the solution of the algebraic SDRE

Pc(x̂)A(x̂) + A′(x̂)Pc(x̂) −Pc(x̂)B(x̂)R−1(x̂)B′(x̂)Pc(x̂) + Q(x̂) = 0. (3.2.9)

The entire algorithm of combined optimal estimation and control leading to nonlinear

regulator problem is shown in Table 3.1, where we introduced the reference command

r(t) for a more general treatment [99].

3.2.3 Infinite-Horizon Algebraic SDRE Regulation for Stochas-

tic Systems Simulation: Van der Pol’s Oscillator

This section presents simulations with the finite-time horizon, optimal regulator con-

troller and noise cancellation for Van der Pol’s oscillator. The dynamic equations of

the Van der Pol’s oscillator are

ẋ1 = x2, (3.2.10)

ẋ2 = (1 − x1
2)x2 − x1 + u, (3.2.11)
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Table 3.1: Incomplete State Information Solution of Continuous-Time Regulator
Problem

Statement of the Problem

Given the process as
ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t),
the observation of the state as
y(t) = C(x)x(t) + v(t),
the performance measure for estimate as

J(t) = trace [var[x̃(t)]] + trace[Pe(t)],

the conditions as
E [w(t)] = 0, COV[w(t), w(τ )] = Qw(t)δ(t − τ ), E [x(t0)] = x̄0,
VAR[x(t0)] = P0; COV[x(t), w(τ )] = 0 for all τ > t,
E[v(t)] = 0, COV [v(t), v(τ )] = Rv(t)δ(t − τ ),
COV [v(t), w(τ )] = 0, COV [v(t), x(τ )] = 0 for all t, τ,
and the performance measure for control as

Ĵ(x0, t0) = E
{

1

2

∫

∞

o
[x′(t)Q(x)x(t) + u′(x)R(x)u(x)]

}

dt
find the optimal estimator and controller

Solution of the Problem I: Optimal Estimator/Kalman Filter

Step 1 At each time step, solve the matrix differential Riccati equation
0 = A(x̂)Pe(x̂, t) + Pe(x̂, t)A′(x̂) + Bw(t)Qw(t)B′

w(t)−
Pe(x̂, t)C′(x̂)R−1

v (t)C(x̂)Pe(x̂, t); Pe(x̂, t0) = Pe0.

Step 2 Using Pe(x̂, t) from Step 1, obtain the optimal estimator (filter) gain as
Ke(x̂, t) = Pe(x̂, t)C′(x̂)R−1

v (t).

Step 3 Using Ke(x̂, t) from Step 2, solve the optimal state estimate x̂(t) from
˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)]; x̂(t0) = x̄0.

Solution of the Problem II: Optimal Controller

Step 4 At each time step, calculate the value of Pc(x̂, t) from the LQR equation
Pc(x̂, t) = Pss(x̂),

Step 5 Using Pc(x̂, t) from Step 4, obtain the optimal controller gain as
Kc(x̂, t) = R−1(x̂)B′(x̂)Pc(x̂, t).

Step 6 Using K(x̂, t) from Step 5, obtain the closed-loop optimal control as
u(x̂, t) = −Kc(x̂, t)x̂(t).
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with the initial conditions

x0 = [5,−3]′. (3.2.12)

The selected weighted matrices are

Q = diag(50, 50), R = 1. (3.2.13)

The covariances of the noises have been taken as

Qw = diag(1, 1), Rv = 10. (3.2.14)

The simulations are performed for a time interval of 30 seconds with 300 time steps

and the resulting states trajectories is shown in Fig. 3.3 and Fig. 3.4, the resulting

optimal control trajectory is shown in Fig. 3.5, the error between the actual and the

estimated state is shown in Fig. 3.6.

Note that for the sake of validity of the proposed technique, a comparison between

the estimated (with noise), and the actual (with filtered noise) states was done. The

solid line denotes the estimated trajectory of the state, the dashed line denotes the

actual trajectory. It can be noted that the algorithm gives very good results as the

estimated state is very close to the actual state. As shown in Fig. 3.6 the error

between the actual and the estimated state is very small, the average error for this

example is 0.03%.
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Figure 3.3: Optimal State x1 for the Van der Pol’s Oscillator
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Figure 3.4: Optimal State x2 for the Van der Pol’s Oscillator
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Figure 3.5: Optimal Control for the Van der Pol’s Oscillator
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Figure 3.6: Error Signals for the Van der Pol’s Oscillator
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3.3 Infinite-Horizon Tracking for Nonlinear Stochas-

tic Systems

3.3.1 Optimal Estimation

Let us reproduce the nonlinear system with noises in state dependent form

ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t), (3.3.1)

y(t) = C(x)x(t) + v(t), (3.3.2)

where, w(t) and v(t) are process, and measurement (white, Gaussian) random noises

with zero mean, respectively. In order to find the best estimate x̂(t) and the corre-

sponding covariance matrix Pe(x̂, t), we use the results of Section 3.1. At each time

step, the estimate equations are

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)], x̂(t0) = x̄(t0), (3.3.3)

where, Ke(x̂, t), the optimal Kalman estimator gain, is obtained as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t), (3.3.4)
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and Pe(x̂, t) is the solution of the matrix algebraic Riccati equation

0 = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)

−Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (3.3.5)

where Pe(x̂, t0) = Pe0.

The minimization of the cost function J is equivalent to minimization of

Ja(x, u) = E

{

1

2

∫ ∞

0

[ê′(t)Q(x̂)ê(t) + u′(x̂, t)R(x̂)u(x̂, t)dt

}

, (3.3.6)

where ê(t) = z(t) −C(x̂)x̂(t).

3.3.2 Optimal Tracking

At each time step, using the results of nonlinear tracking obtained in Section 2.3.1

(except that the state is now the optimal estimate x̂(t)) we get

u(x̂, t) = −R−1(x̂)B′(x̂)[Pc(x̂, t)x̂(t) − g(x̂, t)], (3.3.7)

where, Pc(x) is a positive-definite solution of the continuous-time algebraic SDRE

Pc(x̂)A(x̂) + A′(x̂)Pc(x̂)− Pc(x̂)B(x̂)R−1(x̂)B′(x̂)Pc(x̂) + C′(x̂)Q(x̂)C(x̂) = 0,(3.3.8)
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and g(x) is a solution of the continuous-time state dependent non-homogeneous

equation

g(x̂) = −
(

[A(x̂) − B(x̂)R−1(x̂)B′(x̂)Pc(x̂)]′
)−1

C′(x̂)Q(x̂)z(x̂), (3.3.9)

The entire algorithm of the combined optimal estimation and control leading to non-

linear tracking problem is shown in Table 3.2.
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Table 3.2: Incomplete State Information Solution of Continuous-Time Tracking Prob-
lem

Statement of the Problem

Given the process as
ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t),
the observation of the state as
y(t) = C(x)x(t) + v(t),
the performance measure for estimate as

J(t) = trace [var[x̃(t)]] + trace[Pe(t)],

the conditions as
E [w(t)] = 0, COV[w(t), w(τ )] = Qw(t)δ(t − τ ), E [x(t0)] = x̄0,
VAR[x(t0)] = P0; COV[x(t), w(τ )] = 0 for all τ > t,
E[v(t)] = 0, COV [v(t), v(τ )] = Rv(t)δ(t − τ ),
COV [v(t), w(τ )] = 0, COV [v(t), x(τ )] = 0 for all t, τ,
and the performance measure for control as

Ĵ(x0, t0) = E
{

1

2

∫

∞

0
[e′(t)Q(x)e(t) + u′(x)R(x)u(x)]

}

dt
find the optimal estimator and controller

Solution of the Problem I: Optimal Estimator/Kalman Filter

Step 1 At each time step, solve the matrix differential Riccati equation
0 = A(x̂)Pe(x̂, t) + Pe(x̂, t)A′(x̂) + Bw(t)Qw(t)B′

w(t)−
Pe(x̂, t)C′(x̂)R−1

v (t)C(x̂)Pe(x̂, t); Pe(x̂, t0) = Pe0.

Step 2 Using Pe(x̂, t) from Step 1, obtain the optimal estimator (filter) gain as
Ke(x̂, t) = Pe(x̂, t)C′(x̂)R−1

v (t).

Step 3 Using Ke(x̂, t) from Step 2, solve the optimal state estimate x̂(t) from
˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t) −C(x̂)x̂(t)]; x̂(t0) = x̄0.

Solution of the Problem II: Optimal Controller

Step 4 At each time step, calculate the value of Pc(x̂) from the equation
Pc(x̂)A(x̂) + A′(x̂)Pc(x̂) −P(x̂)cB(x̂)R−1(x̂)B′(x̂)Pc(x̂) + C′(x̂)Q(x̂)C(x̂) = 0,

Step 5 Calculate the value of g(x) from the equation

g(x̂) = −
(

[A(x̂) − B(x̂)R−1(x̂)B′(x̂)Pc(x̂)]′
)

−1
C′(x̂)Q(x̂)z(x̂)

Step 6 Obtain the closed-loop optimal control as
u(x̂, t) = −R−1(x̂)B′(x̂)[Pc(x̂, t)x̂(t) − g(x̂, t)].

3.3.3 Infinite-Horizon Algebraic SDRE Tracking for Stochas-

tic Systems Simulation: Inverted Pendulum

For numerical simulation and analysis, the developed estimation and optimal tracking

technique is implemented for noise cancellation for an inverted pendulum controlled

by DC motor, as shown in Fig. 3.7.
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Figure 3.7: Inverted Pendulum Controlled by DC Motor

The dynamic equations for system

V (t) = L
di(t)

dt
+Ri(t) + kb

dθ(t)

dt
, (3.3.10)

ml2
d2θ(t)

dt2
= −mglsin(θ(t))− kmi(t), (3.3.11)

where, V is the control voltage, L is the motor inductance, i is the current through the

motor winding, R the motor winding resistance, kb the motor’s back electro magnetic

force constant, θ the angle of pendulum, m the mass of pendulum, l the length of

rod, g the gravitational constant, and km the damping (friction) constant.

The nonlinear state equations for the system are written in the state dependent
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form
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u, (3.3.12)

where: θ = x1 , θ̇ = x2 , i = x3, and V = u.

Let the selected weighted matrices be

Q = diag(100, 0, 0), R = 0.07, F = diag(1, 1, 1). (3.3.13)

The covariances of the noises have been taken as

Qw = diag(0.2, 0.2, 0.2), Rv = 10. (3.3.14)

The simulations are performed for a time interval of 30 seconds with 300 time steps

and the resulting angle trajectories is shown in Fig. 3.8, where the dash-dot line

denotes the reference angle trajectory, the dashed line denotes the actual angle, and

the solid line denotes the estimated angle. The optimal control voltage is shown in

Fig. 3.9, where the solid line denotes the estimated optimal control and the doted

line denotes the actual optimal control signal. The error between the actual and the

estimated angle is shown in Fig. 3.10.

Comparing these trajectories in Fig. 3.8, it’s clear that the proposed methodology

gives very good results as the estimated optimal angle is making a very good tracking
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Figure 3.8: Angle Trajectories for Inverted Pendulum Controlled by DC Motor
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Figure 3.9: Optimal Control for Inverted Pendulum Controlled by DC Motor
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Figure 3.10: Optimal Error for Inverted Pendulum Controlled by DC Motor

to the reference angle, and also the estimated trajectory is very close to the actual

output trajectory. As shown in Fig. 3.10 the error between the actual and the

estimated motor angle is very small, the average error for this example is 0.02%.

3.4 Conclusions

Most of existing estimation techniques relies on applying the linear estimation tech-

niques to the linearized systems, which can be effective only in the small vicinity

of the operating point. This chapter presents an efficient online technique used for

infinite-horizon nonlinear stochastic regulator and tracking problems.

The idea of the proposed technique is to integrate the Kalman filter algorithm

and the infinite-horizon SDRE technique. Kalman filter is used to estimate the un-

measured states which are corrupted with noises in the nonlinear model. Unlike the
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ordinary methods which deal with the linearized system, this technique will estimate

the unmeasured states of the nonlinear system directly, and this will make the pro-

posed technique effective for wide range of operating points.
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Chapter 4

Finite-Horizon Differential State

Dependent Riccati Equation

(SDRE) for Deterministic Systems

The infinite-horizon optimal control for nonlinear systems was discussed in Chapter 2.

In infinite-horizon optimal nonlinear control problem, the differential Riccati equation

(DRE) is converted to an algebraic Riccati equation (ARE) which is easy to be

solved. Finite-horizon optimal control of nonlinear systems is a challenging problem

in the control field due to the complexity of time-dependency of the Hamilton Jacobi

Bellman (HJB) differential equation. Also, in the finite-horizon SDRE problems, the

solution of the SDRE is time dependent and a differential equation, rather than an

algebraic equation in infinite-horizon SDRE.

From the literature, the available methods for this purpose can be classified to
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classical and intelligent methods. One approach in the classical methods is to calculate

the open loop solution through some numerical methods and then use predictive

techniques for closing the control loop [89, 65]. The drawback of this technique is

mainly the dependency of the solution to the pre-specified initial conditions (IC) and

time-to-go. On the other hand, the intelligent methods are based on offline training

of the weights and online usage of the neural network for calculation of the control.

But, this method cannot be used if resulted trajectory lies out of the neural network

trained domain [27, 52, 55, 142].

4.1 Lyapunov Equation Approach for Differential

SDRE

Inspired by the great potential of the algebraic SDRE for regulation and tracking

of infinite-horizon nonlinear systems [20, 29], this chapter presents the differential

SDRE, strictly speaking it could be called State Dependent Differential Riccati Equa-

tion (SDDRE), technique for finite-horizon optimal control of nonlinear systems based

on a change of variable [104], that converts the differential Riccati equation (DRE) to

a linear differential Lyapunov equation (DLE) [101], and evaluating the coefficients of

the resulted equation based on the current state values at each time step and freezing

these coefficients from current time to the next time step. Then, the Lyapunov equa-

tion is solved in a closed form at each step during online implementation. The use of

Lyapunov-type equations in solving optimal problems is given in [136]. Because the
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solution is based on the differential Lyapunov equation, we call the new method the

Lyapunov equation approach.

4.1.1 Supporting Theorems

In this section, the relation between the proposed technique and the exact optimal

solution to the finite-horizon problem will be discussed. This is done through the

following Theorems [56]

4.1.1.1 Theorem 1

The solution to the optimal control of the nonlinear finite-horizon problem can be

approximated to an optimal solution given through finite-horizon differential SDRE.

Given the nonlinear system in the form

ẋ(t) = f(x) + g(x)u(t), (4.1.1)

which is expressed in a state-dependent like linear form, as:

ẋ(t) = A(x)x(t) + B(x)u(t), (4.1.2)

where f(x) = A(x)x(t), and B(x) = g(x).

The solution to the optimal control of nonlinear system (4.1.2) subject to the cost
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function

J(x,u) =
1

2
x′(tf)Fx(tf) +

1

2

∫ tf

t0

[x′(t)Q(x)x(t) + u′(x)R(x)u(x)] dt, (4.1.3)

where Q(x) and F are symmetric positive semi-definite matrices, and R(x) is a sym-

metric positive definite matrix, is given by

u(x, t) = −R−1(x)B′(x)[P(x, t)x(t)+ Π], (4.1.4)

where

Π =
1

2
[x′Px1

x x′Px2
x . . . x′Pxnx]′, Pxi

=
∂P(x, t)

∂xi

. (4.1.5)

P(x, t) is a symmetric positive definite solution to the equation

−Ṗ(x, t) = P(x, t)A(x)+ A′(x)P(x, t)− P(x, t)B(x)R−1(x)B′(x)P(x, t)

+Q(x) + Ω, (4.1.6)

with the final condition P(x, tf) = F, where

Ω =
1

4

n
∑

i=1

n
∑

j=1

Pxi
x[B(x)R−1(x)B′(x)]ijx

′Pxj
, (4.1.7)

and [ ]ij is the ith element of the jth row of that matrix.

Proof :
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The desired finite-horizon optimal control is given by the partial differential HJB

equation [83]

−Jt(x, t) = J′
x(x, t)A(x)x +

1

2
x′Q(x)x−

1

2
J′

x(x, t)B(x)R−1(x)B′(x)Jx(x, t),(4.1.8)

with the final condition J(x, tf) = 1
2
x′(t)Fx(t), where J(x, t) represents the optimal

cost function and subscript t and x denote the corresponding partial derivatives, Jt

and Jx, respectively, of J, the optimal control is given by

u(x, t) = −R−1(x)B′(x)Jx(x, t). (4.1.9)

J(x, t) is a positive definite matrix can be written in the form

J(x, t) =
1

2
x′(t)P(x, t)x(t), (4.1.10)

which leads to

Jt(x, t) =
1

2
x′Pt(x, t)x, Jx(x, t) = P(x, t)x + Π. (4.1.11)

Substituting (4.1.11) and (4.1.11) in (4.1.8)

−
1

2
x′Pt(x, t)x = (P(x, t)x + Π)′A(x)x +

1

2
x′Q(x)x−

1

2
(P(x, t)x

+Π)′B(x)R−1B′(x)(P(x, t)x + Π), (4.1.12)
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which is rearranged in the form

−
1

2
x′Pt(x, t)x = x′

[

P(x, t)A(x) +
1

2
Q(x) −

1

2
P(x, t)B(x)R−1B′(x)P(x, t)

]

x

+Π′

[

A(x)x− B(x)R−1B′(x)

(

P(x, t)x +
1

2
Π

)]

. (4.1.13)

Substituting (4.1.4) in (4.1.2)

ẋ(t) = A(x)x− B(x)R−1B′(x)[P(x, t)x + Π], (4.1.14)

Substituting (4.1.14) in (4.1.13)

−
1

2
x′Pt(x, t)x = x′

[

P(x, t)A(x) +
1

2
Q(x) −

1

2
P(x, t)B(x)R−1B′(x)P(x, t)

]

x

+Π′ẋ +
1

2
Π′B(x)R−1B′(x)Π. (4.1.15)

Multiplying the transpose of (4.1.5) by ẋ(t)

Π′ẋ =
1

2

n
∑

i=1

(x′Pxi
x) ẋi =

1

2
x′

(

n
∑

i=1

Pxi
ẋi

)

x. (4.1.16)

From (4.1.15) and (4.1.16)

−
1

2
x′(Pt +

n
∑

i=1

Pxi
ẋi)x = x′

[

PA(x) +
1

2
Q −

1

2
PB(x)R−1B′(x)P

]

x

+
1

2
Π′B(x)R−1B′(x)Π. (4.1.17)
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Calculating the total derivative of P as

Ṗ = Pt +
n
∑

i=1

Pxi
ẋi, (4.1.18)

and since

Π′B(x)R−1B′(x)Π =
1

4
x′

(

n
∑

i=1

n
∑

j=1

Pxi
x[B(x)R−1B′(x)]ijx

′Pxj

)

x. (4.1.19)

Substituting from (4.1.18) and (4.1.19) in (4.1.17)

−
1

2
x′Ṗ(x, t)x = x′

(

P(x, t)A(x) +
1

2
Q(x) −

1

2
P(x, t)B(x)R−1B′(x)P(x, t) +

1

2
Ω

)

x. (4.1.20)

It follows that (4.1.20) should hold good for any value of x . This clearly means that

the function P(x, t) should satisfy the matrix differential Riccati equation

−Ṗ(x, t) = P(x, t)A(x)+ A′(x)P(x, t)+ Q −P(x, t)B(x)R−1B′(x)P(x, t)+ Ω,(4.1.21)

with the final condition

P(x, tf) = F. (4.1.22)

This proves that solving (4.1.6) solves the HJB equation (4.1.8) and gives the optimal

solution to the nonlinear finite-horizon problem.

Performing some approximations by neglecting terms Ω in (4.1.6) and Π in (4.1.4),
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which leads to the optimal control given by [56]

u(x, t) = −R−1(x)B′(x)P(x, t)x(t), (4.1.23)

resulted from solving the differential SDRE

−Ṗ(x, t) = P(x, t)A(x) + A′(x)P(x, t) − P(x, t)B(x)R−1(x)B′(x)P(x, t) + Q(x). (4.1.24)

Using this approximation, the control will be approximated to be optimal control.

4.1.1.2 Theorem 2

The approximated optimal control given through finite-horizon differential SDRE in

(4.1.23) resulted from solving the DRE (4.1.24) for the positive definite matrix P(x, t),

makes the nonlinear system (4.1.2) a globally stable system.

Proof :

Selecting the Lyapunov function

−V(x, t) = x′P(x, t)x, (4.1.25)

where P(x, t) is the symmetric positive definite matrix, and taking the total derivative

of V(x, t) leads to

−V̇(x, t) = ẋ′Px, t)x + x′Ṗ(x, t)x + x′P(x, t)ẋ. (4.1.26)
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Substituting from (4.1.23) in (4.1.2)

ẋ(t) = A(x)x− B(x)R−1B′(x)P(x, t)x. (4.1.27)

Substituting from (4.1.24) and (4.1.27) in (4.1.26)

−V̇(x, t) = ẋ′[−P(x, t)B(x)R−1(x)B′(x)P(x, t)− Q]x. (4.1.28)

Since Q(x) is a symmetric positive semi-definite matrix, and P(x, t) and R(x) are

symmetric positive definite matrices, it’s clear that V(x, t) is a positive definite matrix

and the total derivative V̇(x, t) is a negative definite matrix. Hence, the finite-horizon

differential SDRE method is globally stable.

4.2 Finite-Horizon Regulator for Deterministic Non-

linear Systems

4.2.1 Problem Formulation

The nonlinear system considered in this chapter is in the form:

ẋ(t) = f(x) + g(x)u(t), (4.2.1)

y(t) = h(x). (4.2.2)
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This nonlinear system can be expressed in a state-dependent linear-like form

ẋ(t) = A(x)x(t) + B(x)u(t), (4.2.3)

y(t) = C(x)x(t), (4.2.4)

where f(x) = A(x)x(t), B(x) = g(x), and h(x) = C(x)x(t).

The goal is to find a state feedback optimal control law of the form u(x) = −Kx(t),

that minimizes a cost function given by [98]

J(x,u) =
1

2
x′(tf)Fx(tf) +

1

2

∫ tf

t0

[x′(t)Q(x)x(t) + u′(x)R(x)u(x)] dt, (4.2.5)

where Q(x) and F are symmetric positive semi-definite matrices, and R(x) is a sym-

metric positive definite matrix. Moreover, x′Q(x)x is a measure of state accuracy

and u′(x)R(x)u(x) is a measure of control effort.

4.2.2 Solution for Finite-Horizon Differential SDRE Regula-

tor

To minimize the above cost function (4.2.5), a state feedback control law is given as

u(x) = −Kx(t) = −R−1(x)B′(x)P(x)x(t), (4.2.6)

where P(x, t) is a symmetric, positive-definite solution of the differential SDRE,

strictly speaking it could be called State Dependent Differential Riccati Equation
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(SDDRE), of the form

−Ṗ(x) = P(x)A(x) + A′(x)P(x)− P(x)B(x)R−1(x)B′(x)P(x) + Q(x), (4.2.7)

with the final condition

P(x, tf) = F. (4.2.8)

The resulting differential SDRE-controlled trajectory becomes the solution of the

state-dependent closed-loop dynamics

ẋ(t) = [A(x)− B(x)R
−1

(x)B′(x)P(x)]x(t). (4.2.9)

As the differential SDRE is a function of (x, t), we do not know the value of the states

ahead of present time step. Consequently, the state dependent coefficients can not

be calculated to solve (4.2.7) with the final condition (4.2.8) by backward integration

from tf to t0. To overcome this problem, an approximate analytical approach is used

[56, 101, 104], which converts the original nonlinear differential Ricatti equation to

a linear differential Lyapunov equation, which can be solved in closed form at each

time step. In order to solve the DRE (4.2.7), one can follow the following steps at

each time step [74]:

1. Solve the ARE to calculate the steady state value Pss(x)

Pss(x)A(x) + A′(x)Pss(x)−Pss(x)B(x)R−1(x)B′(x)Pss(x) + Q(x) = 0.(4.2.10)
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2. Use changing-of-variables procedure and assume that

K(x, t) = [P(x, t)− Pss(x)]−1. (4.2.11)

3. Calculate the value of Acl(x) as

Acl(x) = A(x) − B(x)R−1B′(x)Pss(x). (4.2.12)

4. Calculate the value of D by solving the algebraic Lyapunov equation [44]

AclD + DA′
cl −BR

−1
B′ =0. (4.2.13)

5. Solve the differential Lyapunov equation

K̇(x, t) = K(x, t)A′
cl(x) + Acl(x)K(x,t)−B(x)R−1B′(x). (4.2.14)

The solution of (4.2.14), as shown by [12], is given by

K(x, t) = eAcl(t−tf )(K(x,tf) − D)eAcl
′(t−tf ) + D. (4.2.15)

6. Use change-of-variables procedure to calculate the value of P(x, t) from (4.2.11)

P(x, t) = K−1(x, t) + Pss(t). (4.2.16)
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7. Finally, calculate the value of the optimal control u(x, t) as

u(x, t) = −R−1B′(x)P(x, t)x(t). (4.2.17)

Fig.4.1 summarizes the overview of the flow chart of finite-horizon differential SDRE

regulation technique. Basically, P(x, t), instead of solving backward in time from

(4.2.7), we now obtain P(x, t) from (4.2.16) in terms of K(x, t), (4.2.15), the analytical

solution of the linear differential Lyapunov equation (DLE) (4.2.14), which itself

requires the solution of the ARE (4.2.10), and the solution of algebraic Lyapunov

equation (4.2.13).

Figure 4.1: Flow Chart for Finite-Horizon Differential SDRE Regulation Technique
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At least for linear systems, if t0 � tf , the solution of the DRE convergences to

that of ARE, and K(x, t) = [P(x, t)− Pss(x)]−1 becomes singular. To avoid that,

the negative definite solution of the ARE can be calculated instead of the positive

definite solution, and in this case [P(x, t) − Pss(x)] is guaranteed to be the positive

definite, hence, its inverse always exists. This approach works for nonlinear case as

well [104]. For calculation of the negative definite solution of the ARE, it suffices to

flip the sign of matrix A(x) and solve the ARE for the positive definite solution, then

by using the negative of Pss(x), the negative definite solution of the original ARE

cab be obtained [104].

Note : It is easily seen that this technique with finite-horizon differential SDRE can

be used for linear systems and the resulting differential SDRE becomes the standard

DRE [98].

4.2.3 Finite-Horizon Differential SDRE Regulation Simula-

tion

To support the effectiveness of the proposed technique, this section presents simu-

lations with the finite-horizon optimal regulator controller for linear and nonlinear

systems.
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4.2.3.1 Linear System Example : Aircraft

Consider the continuous-time F-16 aircraft plant [127, 135]
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u, (4.2.18)

with the initial conditions

x0 = [15,−13,−12]′. (4.2.19)

The selected weighted matrices are

Q = diag(100, 100, 100), R = 1, F = diag(1, 1, 1). (4.2.20)

The simulations are performed for final time of 10 seconds. The optimal states

trajectories is shown in Fig. 4.2, where the solid line denotes state x1, the dashed line

denotes state x2, and the dashed doted line denotes state x3. The optimal control is

shown in Fig. 4.3. From the simulation results, it is clear that the proposed finite-

horizon differential SDRE technique for nonlinear systems is able to solve the optimal

regulation problem of linear systems.
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Figure 4.2: Optimal States for the F-16 Aircraft
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Figure 4.3: Optimal Control for the F-16 Aircraft
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4.2.3.2 Nonlinear System Example: Input-Affine Nonlinear System

Consider the following affine in control input nonlinear system [135, 141]

ẋ1(t) = −x1(t) + x2(t), (4.2.21)

ẋ2(t) = −0.5x1(t) − 0.5x2(t)
[

1 −
(

cos(2x1(t)) + 2)2
)]

+ u(t)cos(2x1(t)), (4.2.22)

with the initial conditions

x0 = [2,−1]′. (4.2.23)

The system can be rewritten in the state dependent form









ẋ1
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u.(4.2.24)

Let the selected weighted matrices are

Q = diag(50, 10), R = 0.1, F = diag(1, 1). (4.2.25)

The simulations are performed for final time of 12 seconds. The optimal states

trajectories is shown in Fig. 4.4, and the optimal control is shown in Fig. 4.5. It is

shown in the simulation example that the finite-horizon differential SDRE has been

able to understand the limitation on the time and apply the control such that the

states error at the final time is very small.
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Figure 4.4: Optimal States for the Nonlinear System
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Figure 4.5: Optimal Control for the Nonlinear System
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4.3 Finite-Horizon Tracking for Deterministic Non-

linear Systems

4.3.1 Problem Formulation

Consider the nonlinear system given by (4.2.1) and (4.2.2), which can be re-described

in the form (4.2.3) and (4.2.4), and let z(t) be the desired, or reference output.

The goal is to find a state feedback, control law that minimizes a cost function

given by

J(x,u) =
1

2
e′(tf)Fe(tf ) +

1

2

∫ tf

t0

[e′(t)Q(x)e(t) + u′(x)R(x)u(x)] dt, (4.3.1)

where the error e(t) = z(t) − y(t).

4.3.2 Solution for Finite-Horizon Tracking using Differential

SDRE

To minimize the cost function (4.3.1), a feedback control law is given as

u(x) = −R−1B′(x)[P(x)x− g(x)], (4.3.2)

where P(x) is a symmetric, positive-definite solution of the differential SDRE of the

form

−Ṗ(x) = P(x)A(x)+ A′(x)P(x)− P(x)B(x)R−1B′(x)P(x)+ C′(x)Q(x)C(x), (4.3.3)
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with the final condition

P(x, tf) = C′(tf)FC(tf), (4.3.4)

and g(x) is a solution of the state-dependent non-homogeneous vector differential

equation

ġ(x) = −[A(x) −B(x)R
−1

(x)B′(x)P(x)]′g(x) −C′(x)Q(x)z(x), (4.3.5)

with the final condition

g(x, tf) = C′(tf)Fz(tf ). (4.3.6)

The resulting differential SDRE-controlled trajectory becomes the solution of the

state-dependent closed-loop dynamics

ẋ(t) = [A(x) −B(x)R−1(x)B′(x)P(x)]x(t) + B(x)R−1(x)B′(x)g(x). (4.3.7)

Similar to Section 4.2.2, an approximate analytical approach is used and the DRE

(4.3.3), and the non-homogeneous differential equation (4.3.5), can be solved in the

following steps at each time step:

1. Solve for P(x, t) similar to the differential SDRE regulator problem in Section

4.2.2, steps from 1 to 6.
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2. Calculate the steady state value gss(x) from the equation

gss(x) = [A(x) − B(x)R−1(x)B′(x)Pss(x)]′−1C′(x)Q(x)z(x). (4.3.8)

3. Use change-of-variables technique and assume that

Kg(x, t) = [g(x, t) − gss(x)]. (4.3.9)

4. Solve the differential equation

Kg(x, t) = e−(A−BR−1B′P)′(t−tf )[g(x, tf) − gss(x)]. (4.3.10)

5. Use changing-of-variables procedure to calculate the value of g(x, t)

g(x, t) = Kg(x, t) + gss(x). (4.3.11)

6. Calculate the value of the optimal control u(x, t) as

u(x, t) = −R−1(x)B′(x)[P(x, t)x(t)− g(x, t)]. (4.3.12)

Fig.4.6 summarizes the overview of the flow chart of finite-horizon differential

SDRE tracking technique

Note : As in the regulation, the technique with finite-horizon differential SDRE can

be used for linear systems and the differential SDRE becomes the standard DRE [98].

70



Figure 4.6: Flow Chart for the Finite-Horizon Differential SDRE Tracking Technique
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4.3.3 Finite-Horizon Differential SDRE Tracking Simulation

In this section, simulations with the finite-time horizon optimal tracking controller

for linear and nonlinear systems are presented.

4.3.3.1 Linear System Example : Smart Prosthetic Hand

Consider the two-link thumb of a smart prosthetic hand [26]. The links in kinematics

are modeled as rigid bodies, as shown in Fig. 4.7, and the properties of rigid body

displacement take a central place in kinematics [64]. Figure 4.8 shows the illustration

of two-link thumb. Lt
1 and Lt

2 are the lengths of the links 1 and 2 of the thumb,

respectively; qt
1 and qt

2 are the angles of joints 1 and 2 of the thumb.

Figure 4.7: Schematic Diagram of Thumb

The various parameters [128] relating to desired trajectory and the two-link thumb

selected for the simulations are given in Table 4.1
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Table 4.1: Parameter Selection of Thumb

Parameters Values
Time (t0, tf ) 0, 20 (sec)

Desired Initial Position (Xt
0, Y

t
0 ) 0.035, 0.060 (m)

Desired Final Position (Xt
f , Y

t
f ) 0.0495, 0.060 (m)

Desired Initial Velocity (Ẋt
0, Ẏ

t
0 ) 0, 0 (m/s)

Desired Final Velocity (Ẋt
f , Ẏ

t
f ) 0, 0 (m/s)

Length (Lt
1, L

t
2) 0.040, 0.040 (m)

p3 inMass (mt
1, m

t
2) 0.043, 0.031 (kg)

p3 inInertia (I t
zz1, I

t
zz2) 6.002 × 10−6, 4.327 × 10−6 (kg-m2)

Matrices A, B, and C of thumb are chosen as

A =


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

, (4.3.13)

B =









0 0 0 1

0 0 1 0









′

, C =









1 0 0 0

0 1 0 0









, (4.3.14)
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and the selected weighted matrices are

Q = diag(100, 100, 10, 10), R = diag(0.1, 0.1), F = diag(1, 1, 1, 1). (4.3.15)

The simulations are performed for final time of 10 seconds and the resulting angle

trajectory is shown in Fig. 4.9, the solid blue line denotes the actual angle of joint 1 of

thumb using finite-horizon differential SDRE controller, the dashed red line denotes

the desired angle of joint 1 of thumb, the solid green line denotes the actual angle of

joint 2 of thumb, the dashed green line denotes the desired angle of joint 2 of thumb.

It’s clear that the proposed methodology gives very good result as the actual angles

is making almost ideal tracking to the desired angles. The tracking angles errors are

shown in Fig. 4.10.

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

100

Time [sec]

O
p
ti
m

a
l 
 A

n
g
le

s
 [
d
e
g
]

 

 

Actual Angle of Joint 1 of Thumb

Desired Angle of Joint 1 of Thumb

Actual Angle of Joint 2 of Thumb

Desired Angle of Joint 2 of Thumb

Figure 4.9: Joint Angles of Thumb
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Figure 4.10: Tracking Error of Thumb

4.3.3.2 Nonlinear System Example : Permanent Magnet Synchronous

Motor

The mathematical model of a surface mounted permanent magnet synchronous motor

(PMSM) based on d− q axis can be expressed as [111]

J
dω

dt
= Pψf iq −Bω, (4.3.16)

L
diq
dt

= −Riq + LPωid − Pψfω + uq, (4.3.17)

L
did
dt

= −Rid + LPωiq + ud, (4.3.18)

where, R is stator resistance, L is stator winding inductance, P is pole pairs, ψf

is rotor permanent magnet flux linkage, J is moment inertia, B is viscous friction

coefficient, id and iq , ud and uq are d− q axis stator current and voltage respectively,
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ω is the motor mechanical velocity.

The nonlinear equations of the system can be written as

ẋ1 = −0.8x1 + 720x2, (4.3.19)

ẋ2 = −80x1 − 185x2 − 4x1x3 + 100u1, (4.3.20)

ẋ3 = −185x3 − 4x1x2 + 100u2, (4.3.21)

y = x1, (4.3.22)

where: ω = x1 , iq = x2 , id = x3, uq = u1 , ud = u2, and the motor parameters are

showed in Table 4.2

The system nonlinear equations can be rewritten in the state dependent form
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. (4.3.23)

Let the desired motor speed be

z(t) =















300 rpm for t < 3,

50 rpm for 3 < t < 10,

(4.3.24)

and the selected weighted matrices be

Q = diag(2000, 2000, 2000), R = diag(1, 1), F = diag(1, 1, 1). (4.3.25)
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Table 4.2: PMSM Parameters

Parameter Nominal value
R 1.65Ω
L 0.0092H
J 0.001kg.m2

P 4
ψf 0.18Wb
B 0.0008N.m.sec/rad

The simulations are performed for final time of 10 seconds and the resulting motor

speed trajectory is shown in Fig. 4.11, and the optimal control is shown in Fig. 4.12.

In Fig. 4.11, the solid line denotes the actual motor speed trajectory, and the dashed

line denotes the desired speed.
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Figure 4.11: Optimal speed for PMSM

Comparing these trajectories in Fig. 4.11, it’s clear that the finite-horizon differen-

tial SDRE nonlinear tracking algorithm gives very good results as the actual optimal
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Figure 4.12: Optimal Control for PMSM

speed is making very good tracking to the desired one, and the developed algorithm

is able to solve the differential SDRE finite-horizon nonlinear tracking problem.

4.4 Conclusions

Finite-horizon optimal control of nonlinear systems is a challenging problem in the

control field due to the complexity of time-dependency of the Hamilton Jacobi Bell-

man (HJB) differential equation. The available methods for this purpose have draw-

backs in terms of the dependency of the solution to the pre-specified initial conditions

and the lack existence of the optimal solution under all conditions.

This chapter presents a novel and computationally efficient online technique used

for finite-horizon nonlinear regulating and tracking problems. This technique based on

change of variables that converts the differential Riccati equation to a linear Lyapunov
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equation. During online implementation, the Lyapunov equation is solved in a closed

form at the given time step.
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Chapter 5

Finite-Horizon Differential State

Dependent Riccati Equation

(SDRE) for Stochastic Systems

Kalman filter is an effective minimum variance linear state estimator that estimates

the system states corrupted with white process and measurement noise. The stan-

dard Kalman filter is limited only to linear systems. Most real-world systems are

nonlinear, in which case standard Kalman filters are not applicable [121]. Therefore,

it becomes necessary to use some other nonlinear filter techniques. The Extended

Kalman filter (EKF) is the most widely applied state estimation algorithm for non-

linear systems. The EKF relies on linearization of the nonlinear system (using Taylor

series expansion) near the region close to the operating point [114]. In linearization,

we assume that the range of operation is small. Consequently, the EKF will only be
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effective in the small neighborhood of the operating points, and the accuracy of this

technique will decrease for large operating range of nonlinear systems.

5.1 Finite-Horizon Regulation for Stochastic Non-

linear Systems

5.1.1 Optimal Estimation

Suppose that the entire state x(t) is not available, but only the output y(t) is mea-

surable. Let us reproduce the nonlinear system with noises in state dependent form

ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t), (5.1.1)

y(t) = C(x)x(t) + v(t), (5.1.2)

where, w(t) and v(t) are process, and measurement (white, Gaussian, zero mean)

random noises, respectively.

In order to find the best estimate x̂(t) and the corresponding covariance matrix

Pe(x̂, t), we use the results of Section 3.1 from Chapter 3 . At each time step, the

state estimate equations are

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)−C(x̂)x̂(t)]; (5.1.3)

x̂(t0) = x̄(t0),
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where, Ke(x̂, t), the optimal Kalman estimator gain, is obtained as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t), (5.1.4)

and Pe(x̂, t) is the solution of the matrix differential Riccati equation

Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)−

Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (5.1.5)

is to be solved in forward direction with initial condition Pe(x̂, t0) = Pe0 for any real-

time implementation, whereas the standard differential Riccati equation, arising in

the control problem, is to be solved in backward direction with a given final condition.

The minimization of J is equivalent to minimization of

Ja(x, u) = E

{

1

2
x̂′(tf )Fx̂(tf ) +

1

2

∫ tf

t0

[x̂′(t)Q(x̂)x̂(t) + u′(x̂, t)R(x̂)u(x̂, t)dt

}

. (5.1.6)

5.1.2 Optimal Regulation

At each time step, using the results of finite-horizon nonlinear regulator obtained in

Chapter 4 except that the state is now the optimal estimate x̂(t)

u(x̂, t) = −R−1(x̂)B′(x̂)Pc(x̂, t)x̂(t) = −Kc(x̂, t)x̂(t), (5.1.7)

where, Kc(x̂, t) = R−1(x̂)B′(x̂)Pc(x̂, t), is the Kalman controller gain and Pc(x̂, t)

is the solution of the finite-horizon, differential SDRE obtained in Section 4.2 from
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Chapter 4.

The entire algorithm of combined estimation and control leading to nonlinear regula-

tor problem is shown in the following steps:

5.1.2.1 Optimal Estimator/Kalman Filter

• At each time step, solve the differential matrix Riccati equation

Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)−

Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (5.1.8)

in the forward direction with the initial condition Pe(x̂, t0) = Pe0.

• Obtain the optimal estimator (filter) gain as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t). (5.1.9)

• Solve for the optimal state estimate x̂(t) from

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)], (5.1.10)

with the initial condition x̂(t0) = x̄0.
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5.1.2.2 Optimal Controller for Regulation

• Solve algebraic Riccati equation (ARE) to calculate the steady state value

Pss(x̂)

Pss(x̂)A(x̂) + A′(x̂)Pss(x̂) −Pss(x̂)B(x̂)R−1(x̂)B′(x̂)Pssx̂ + Q(x̂) = 0. (5.1.11)

• Use change-of-variables procedure and assume that

K(x̂, t) = [Pc(x̂, t)− Pss(x̂)]−1. (5.1.12)

• Calculate the value of Acl(x̂) from the equation

Acl(x̂) = A(x̂) − B(x̂)R
−1

B′(x̂)Pss(x̂) (5.1.13)

.

• Calculate the value of D by Solving the algebraic Lyapunov equation [44]

AclD + DA′
cl − BR

−1
B′ = 0. (5.1.14)

• Solve the differential Lyapunov equation

K̇(x̂, t) = K(x̂, t)A′
cl(x̂) + Acl(x̂)K(x̂, t)−B(x̂)R−1B′(x̂). (5.1.15)
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The solution of (5.1.15) is given by [12]

K(x̂, t) = eAcl(t−tf )(K(x̂, tf) −D)eAcl
′(t−tf ) + D. (5.1.16)

• Calculate the value of Pc(x̂, t) from

Pc(x̂, t) = K−1(x̂, t) + Pss(x̂). (5.1.17)

• Finally, calculating the value of the optimal control u(x̂, t) as

u(x̂, t) = −R−1(x̂)B′(x̂)Pc(x̂, t)x̂(t). (5.1.18)

The summary of the nonlinear regulator problem is shown in Fig. 5.1, and the overview

of the process of finite-horizon differential SDRE regulation technique for stochastic

systems is summarized in Fig.5.2.
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Figure 5.1: Summary of Continuous-Time Nonlinear Regulator

Figure 5.2: Flow Chart of Finite-Horizon Differential SDRE Regulation Technique
for Stochastic Systems
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Table 5.1: Procedure Summary of Continuous-Time Regulator Problem: Incomplete
State Information

Statement of the Problem

Given the process as
ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t),
the observation of the state as
y(t) = C(x)x(t) + v(t),
the performance measure for estimate as

J(t) = trace [var[x̃(t)]] + trace[Pe(t)],

the conditions as
E [w(t)] = 0, COV[w(t), w(τ )] = Qw(t)δ(t − τ ), E [x(t0)] = x̄0,
VAR[x(t0)] = P0; COV[x(t), w(τ )] = 0 for all τ > t,
E[v(t)] = 0, COV [v(t), v(τ )] = Rv(t)δ(t − τ ),
COV [v(t), w(τ )] = 0, COV [v(t), x(τ )] = 0 for all t, τ,
and the performance measure for control as

Ĵ(x0, t0) = E
{

1

2
x′(tf)Fx(tf ) + 1

2

∫ tf

t0
[x′(t)Q(x)x(t) + u′(x)R(x)u(x)]

}

dt

find the optimal estimator and controller

Solution of the Problem I: Optimal Estimator/Kalman Filter

Step 1 At each time step, solve the matrix differential Riccati equation
Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A′(x̂) + Bw(t)Qw(t)B′

w(t)−
Pe(x̂, t)C′(x̂)R−1

v (t)C(x̂)Pe(x̂, t); Pe(x̂, t0) = Pe0.

Step 2 Using Pe(x̂, t) from Step 1, obtain the optimal estimator (filter) gain as
Ke(x̂, t) = Pe(x̂, t)C′(x̂)R−1

v (t).

Step 3 Using Ke(x̂, t) from Step 2, solve the optimal state estimate x̂(t) from
˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)]; x̂(t0) = x̄0.

Solution of the Problem II: Optimal Controller

Step 4 At each time step, calculate the value of Pc(x̂, t) from the equation
Pc(x̂, t) = K−1(x̂, t) + Pss(x̂),
with K(x̂, t) is the solution differential Lyapunov equation.

Step 5 Using Pc(x̂, t) from Step 4, obtain the optimal controller gain as
Kc(x̂, t) = R−1(x̂)B′(x̂)Pc(x̂, t).

Step 6 Using K(x̂, t) from Step 5, obtain the closed-loop optimal control as
u(x̂, t) = −Kc(x̂, t)x̂(t).

The entire algorithm of combined estimation and control leading to nonlinear regu-

lator problem is shown in Table 5.1.
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5.1.3 Finite-Horizon Differential SDRE Regulation for Stochas-

tic Systems Simulation : Crane System

This section presents simulations with the finite-time horizon optimal regulator con-

troller and noise cancellation for a nonlinear crane system [58]. The aim of the control

design is to control the swinging of a crane as quickly as possible, (see Fig. 5.3). The

crane is described as follows

Figure 5.3: Crane System [84]
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, (5.1.19)

where M is the mass of cart, k is torque coefficient, J is moment of inertia, l is the

length of pendulum, m is the mass of pendulum, Dr is friction coefficient between

rail and cart, Dθ is friction coefficient between cart and pendulum, and g is the

gravitational acceleration.
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Introducing x = [ θ r θ̇ ṙ ]′ as the state vector, we obtain the system state

equations

ẋ1 = x3, (5.1.20)

ẋ2 = x4, (5.1.21)

ẋ3 =
1

α(x1)
{mlcos(x1)

(

−Drx4 −mlx2
3sin(x1)

)

+(M +m)(−Dθx3 −mlgsin(x1)) +mlkucos(x1)}, (5.1.22)

ẋ4 =
1

α(x1)
{(J +ml2)

(

−Drx4 −mlx2
3sin(x1)

)

+mlcos(x1)(−Dθx3 −mlgsin(x1)) + (J +ml2)ku},, (5.1.23)

where α(x1) = (J +ml2)(M +m)−m2l2cos2(x1).

The nonlinear model for the crane can be rewritten in state dependent form with the

State Dependent Coefficient (SDC) matrices

A(x) =
1

α(x1)
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, (5.1.24)

B(x) =
1

α(x1)


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


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, (5.1.25)
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where

a31(x) = −(M +m)mlgsin(x1), (5.1.26)

a33(x) = −m2l2x3cos(x1)sin(x1) − (M +m)Dθ, (5.1.27)

a34(x) = mlDrcos(x1), (5.1.28)

a41(x) = −m2l2gcos(x1)sin(x1), (5.1.29)

a43(x) = (J +ml2)mlx3sin(x1) −mlDθcos(x1), (5.1.30)

a44 = (J +ml2)Dr, (5.1.31)

b3(x) = mlkcos(x1), (5.1.32)

b4 = (J +ml2)k, (5.1.33)

The various parameters of the crane system are given in Table 5.2,

Table 5.2: Parameter of the Crane System

Parameters Values

M 1.96 [kg]
k 0.98 [N/V]
J 0.000447 [kg-m2]
l 0.125 [m]
m 0.045 [kg]
Dr 16.3 [kg/sec]
Dθ 0.00402 [kg-m2/sec]
g 9.8 [m/sec2]

with the initial conditions

x0 = [π/4, 0, 0, 0]′. (5.1.34)
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The selected weighted matrices are

Q = diag(100, 1, 1, 1), R = 0.01, F = diag(1, 1, 1, 1). (5.1.35)

The covariances of the noises have been taken as

Qw = diag(2, 1, 2, 1), Rv = 1. (5.1.36)

The simulations are performed for final time of 10 seconds and the resulting crane

angle trajectories is shown in Fig. 5.4, and the optimal control trajectories is shown

in Fig. 5.5.
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Figure 5.4: Optimal Crane Angles

Note that for sake of validity of the purposed technique, a comparison between

the estimated (with noise) and the actual (without noise) angle was done. In Fig.
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Figure 5.6: Crane Angle Error
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5.4, the solid line denotes the estimated trajectory of the crane angle, the dashed line

denotes the actual trajectory. It can be noted that the proposed method gives very

good results as the estimated angle is very close to the actual state. As shown in Fig.

5.6 the error between the actual and the estimated state is very small, the average

error for this example is 0.3%.

5.2 Finite-Horizon Tracking for Stochastic Nonlin-

ear Systems

5.2.1 Optimal Estimation

Let us reproduce the nonlinear system with process and measurement noises in state

dependent form

ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t), (5.2.1)

y(t) = C(x)x(t) + v(t). (5.2.2)

In order to find the best estimate x̂(t) and the corresponding covariance matrix

Pe(x̂, t), we use the results of Section 3.1 from Chapter 3. At each time step, the

estimate equation is

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)−C(x̂)x̂(t)]; (5.2.3)

x̂(t0) = x̄(t0),
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where, Ke(x̂, t), the optimal Kalman estimator gain, is obtained as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t), (5.2.4)

and Pe(x̂, t) is the solution of the matrix differential Riccati equation

Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)

−Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (5.2.5)

where Pe(x̂, t0) = Pe0.

The minimization of J is equivalent to minimization of

Ja(x, u) = E

{

1

2
ê′(tf)Fê(tf ) +

1

2

∫ tf

t0

[ê′(t)Q(x̂)ê(t) + u′(x̂, t)R(x̂)u(x̂, t)dt

}

, (5.2.6)

where the estimated error ê(t) = z(t) −C(x̂)x̂(t).

5.2.2 Optimal Tracking

At each time step, using the results of finite-horizon nonlinear tracking obtained in

Chapter 4 except that the state is now the optimal estimate x̂(t)

u(x̂, t) = −R−1(x̂)B′(x̂)[Pc(x̂, t)x̂(t) − g(x̂, t)], (5.2.7)

where, Pc(x̂, t) and g(x̂, t) are the solutions of the finite-horizon differential SDRE

problem obtained in Section 4.3 from Chapter 4.
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The entire algorithm of combined estimation and control leading to nonlinear tracking

problem is shown in the following steps:

5.2.2.1 Optimal Estimator/Kalman Filter

• At each time step, solve the differential matrix Riccati equation

Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A
′(x̂) + Bw(t)Qw(t)B′

w(t)−

Pe(x̂, t)C
′(x̂)R−1

v (t)C(x̂)Pe(x̂, t), (5.2.8)

in the forward direction with the initial condition Pe(x̂, t0) = Pe0.

• Obtain the optimal estimator (filter) gain as

Ke(x̂, t) = Pe(x̂, t)C
′(x̂)R−1

v (t). (5.2.9)

• Solve for the optimal state estimate x̂(t) from

˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)], (5.2.10)

with the initial condition x̂(t0) = x̄0.

5.2.2.2 Optimal Controller for Tracking

• Solve for P(x̂, t) similar to the differential SDRE regulator problem in Section

5.1.2
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• Calculate the steady state value gss(x̂) from the equation

gss(x̂) = [A(x̂) − B(x̂)R−1(x̂)B′(x̂)Pss(x̂)]′−1C′(x̂)Q(x̂)z(x̂). (5.2.11)

• Use change-of-variables procedure and assume that

Kg(x̂, t) = [g(x̂, t) − gss(x̂)]. (5.2.12)

• Solve differential equation to obtain

Kg(x̂, t) = e−(A−BR−1B′P)′(t−tf )[g(x̂, tf) − gss(x̂)]. (5.2.13)

• Calculate the value of g(x̂, t) from

g(x̂, t) = Kg(x̂, t) + gss(x̂). (5.2.14)

• Calculate the value of the optimal control u(x̂, t) as

u(x̂, t) = −R−1(x̂)B′(x̂)[Pc(x̂, t)x̂(t) − g(x̂, t)]. (5.2.15)

The summary of the nonlinear tracking problem is shown in Fig. 5.7. Here, we see

that the original plant is subjected to process noise w(t) and measurement noise v(t).

Fig.5.8 summarizes the overview of the process of finite-horizon differential SDRE

tracking technique for stochastic systems.
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Figure 5.7: Summary of Continuous-Time Nonlinear Tracking

Figure 5.8: Flow Chart of Finite-Horizon Differential SDRE Tracking Technique for
Stochastic Systems
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Table 5.3: Procedure Summary of Continuous-Time Tracking Problem: Incomplete
State Information

Statement of the Problem

Given the process as
ẋ(t) = A(x)x(t) + B(x)u(t) + Bw(t)w(t),
the observation of the state as
y(t) = C(x)x(t) + v(t),
the performance measure for estimate as

J(t) = trace [var[x̃(t)]] + trace[Pe(t)],

the conditions as
E [w(t)] = 0, COV[w(t), w(τ )] = Qw(t)δ(t − τ ), E [x(t0)] = x̄0,
VAR[x(t0)] = P0; COV[x(t), w(τ )] = 0 for all τ > t,
E[v(t)] = 0, COV [v(t), v(τ )] = Rv(t)δ(t − τ ),
COV [v(t), w(τ )] = 0, COV [v(t), x(τ )] = 0 for all t, τ,
and the performance measure for control as

Ĵ(x0, t0) = E
{

1

2
x′(tf)Fx(tf ) + 1

2

∫ tf

t0
[x′(t)Q(x)x(t) + u′(x)R(x)u(x)]

}

dt

find the optimal estimator and controller

Solution of the Problem I: Optimal Estimator/Kalman Filter

Step 1 At each time step, solve the matrix differential Riccati equation
Ṗe(x̂, t) = A(x̂)Pe(x̂, t) + Pe(x̂, t)A′(x̂) + Bw(t)Qw(t)B′

w(t)−
Pe(x̂, t)C′(x̂)R−1

v (t)C(x̂)Pe(x̂, t); Pe(x̂, t0) = Pe0.

Step 2 Using Pe(x̂, t) from Step 1, obtain the optimal estimator (filter) gain as
Ke(x̂, t) = Pe(x̂, t)C′(x̂)R−1

v (t).

Step 3 Using Ke(x̂, t) from Step 2, solve the optimal state estimate x̂(t) from
˙̂x(t) = A(x̂)x̂(t) + B(x̂)u(t) + Ke(x̂, t)[y(t)− C(x̂)x̂(t)]; x̂(t0) = x̄0.

Solution of the Problem II: Optimal Controller

Step 4 At each time step, calculate the value of Pc(x̂, t) from the equation
Pc(x̂, t) = K−1(x̂, t) + Pss(x̂),
with K(x̂, t) is the solution differential Lyapunov equation (5.1.15) .

Step 5 Calculate the value of g(x, t) from the equation
g(x̂, t) = Kg(x̂, t) + gss(x̂)
with Kg(x̂, t) is the solution differential equation (5.2.13) .

Step 6 Obtain the closed-loop optimal control as
u(x̂, t) = −R−1(x̂)B′(x̂)[Pc(x̂, t)x̂(t) − g(x̂, t)].

The entire algorithm of combined estimation and control leading to nonlinear tracking

problem is shown in Table 5.3.
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5.2.3 Finite-Horizon Differential SDRE Tracking for Stochas-

tic Systems Simulation : Solar Generator System

For numerical simulation and analysis, the developed optimal estimation and tracking

technique for stochastic systems is implemented for noise cancellation for the nonlinear

electrical circuit with the solar generator and DC motor drive system [69]. The

nonlinear circuit is presented in Fig. 5.9. In the time t = 0 the switch W is closed

and the circuit is in a transient state.

Figure 5.9: An Electric Circuit Containing Solar Generator and DC Motor [69]

The transient state of the nonlinear circuit is described by the following set of

equations [11, 68]

ẋ1 = −a1x1 + a2x2, (5.2.16)

ẋ2 = −a3x1 − a4x2 + a5x3, (5.2.17)

ẋ3 = −a6x2 − a7e
ax3 + u, (5.2.18)

where x1 = Ω represents the DC motor rotational speed, x2 = IM is the rotor
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current, x3 = Vp is the generator voltage, and u is the solar generator current input.

The coefficients a1; ...; a7 are expressed by the following relations that combine the

parameters of nonlinear circuit

a1 = Kr

J
, a2 = Kx

J
, a3 = Kx

L
, a4 = Rm

L
, a5 = 1

L
, a6 = 1

C
, a7 = Is

C
.

The transient state of the nonlinear circuit can be rewritten in state dependent

form
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u. (5.2.19)

The various parameters of the electrical circuit are given in Table 5.4, with the initial

conditions

x0 = [15, 0, 0]′. (5.2.20)

Table 5.4: Parameter of The Electrical Circuit Containing Solar Generator and DC
Motor

Parameters Values
Rm 12 [Ω]
kx 0.5 [Vs]
kr 0.1 [V s2]
J 0.001 [kg-m2]
C 0.5 [mF]
L 0.1 [H]
Is 0.00128 [A]
a 0.45 [V −1]
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Let the desired motor speed be

z(t) =















8 rad/sec for t < 2,

2 rad/sec for 2 < t < 6,

(5.2.21)

and the selected weighted matrices be

Q = diag(1000, 20, 20), R = 4, F = diag(1, 1, 1). (5.2.22)

The covariances of the noises have been taken as

Qw = diag(1, 1, 1), Rv = 1. (5.2.23)

The simulations are performed for final time of 6 seconds and the resulting output

trajectories is shown in Fig. 5.10, where the dash-dot line denotes the desired motor

speed, the dashed line denotes the actual (without noise) speed, and the solid line

denotes the estimated (with noise) speed. The optimal control is shown in Fig. 5.11,

where the solid line denotes the estimated optimal control and the doted line denotes

the actual optimal control signal.

Comparing the trajectories in Fig. 5.10, it’s clear that the proposed method gives

very good results as the estimated optimal motor speed is making a good tracking to

the desired speed, and the estimated speed is very close to the actual speed with very

small error as seen in Fig. 5.12. From these results, it can be seen that the developed

technique is able to solve the finite-horizon nonlinear tracking stochastic problem.

101



0 1 2 3 4 5 6
−2

0

2

4

6

8

10

Time [sec]

M
o

to
r 

R
o

ta
ti
o

n
a

l 
S

p
e

e
d

 [
ra

d
/s

e
c
]

 

 

Desired Speed

Actual Speed

Estimated Speed

Figure 5.10: DC Motor Optimal Rotational Speed
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Figure 5.11: Solar Generator Optimal Control
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Figure 5.12: DC Motor Optimal Rotational Speed Error

5.3 Conclusions

This chapter discuses a novel efficient online technique used for finite-horizon nonlin-

ear regulator and tracking problems with incomplete state information. This tech-

nique based on integrating the Kalman filter algorithm and the finite-horizon differ-

ential SDRE technique. Kalman filter estimates the states which are corrupted with

noise. In this technique, the optimal control problem of the nonlinear system is solved

by using finite-horizon differential SDRE algorithm, which makes this technique ef-

fective for a wide range of operating points.
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Chapter 6

Nonlinear, Optimal Tracking For

Missile Gimbaled Seeker

The frequent minor wars of the last four decades have brought to the forefront guided

missiles as weapons against all types of military targets. Before discussing the various

ways in which missiles may be guided and the methods of implementation of such

guidance systems, it is worth recalling why guided missiles have become so much

importance in recent years. Any weapon should have as high a single shot kill prob-

ability as possible [66]. There are three main reasons why unguided weapons may

fail in this respect: the random dispersion at launch, deflection of flight path, and

the target movement. One way of increasing the single shot kill probability is to use

a large warhead with a large lethal area, but this will usually mean a larger missile.

The other method that is adopted is to use a closed loop system to minimize the

miss-distance and thus, improve the single shot kill probability. This can be accom-

plished by monitoring continuously the flight parameters of the missile and target,

104



then employing this information to control the missile in space [47].

The majority of homing guided missiles uses gimbaled seekers. The dynamical

equations describing seeker gimbal system are highly nonlinear. Accurate nonlinear

control of the motion of the gimbaled seeker through the seeker DC motors is required.

6.1 Introduction and Background

Strategic military dependence on missile technology has been growing rapidly since its

first use at the beginning of the twentieth century. The critical requirement regarding

missile usage is to lead the missile robustly and accurately from its launch point to

its designated end point or target. The missile target could be a certain point in its

required orbit in space, or a moving hostile object either flying in the sky or rolling on

terrain. To achieve this requirement, three operations to be completed, the Guidance,

Navigation and Control (GNC) operations [148]. The GNC is illustrated in Fig.6.1

and is simply described by dividing it into two main loops [123]. The guidance loop

has the ability to detect the current target parameters through the guidance sensors

and to calculate the error between the desired and actual trajectory. This error is

delivered to the guidance computer to generate the guidance commands according

to the guidance method used [39]. The guidance command is then delivered to the

autopilot, which computes the proper inputs to the actuators to move the missile fins

and wings. Missile motion is described as a set of angular rotations and accelerations

that are sensed by inertial sensors as a feedback in the autopilot loop to verify the

desired maneuver of the missile [70].
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Figure 6.1: Guidance, Navigation, and Control (GNC) Operations

Radio Frequency (RF), Infra Red (IR) and optical sensors are examples of different

types of guidance sensors that can be used to detect target parameters. Guidance

systems can be categorized into four main categories as shown in Fig.6.2. These

categories are command, beam rider, autonomous, and homing guidance [47]. A fifth

possible category is a combination between two or more of the previous guidance

methods such as some types of cruise missiles that switch from autonomous guidance

to homing guidance in the terminal phase for more accurate hits. The difference

between command guidance and homing guidance is the location of the guidance

computer, which can be on the launching station or on missile board, respectively.

Beam rider guidance can be classified under the command guidance category, but

it requires a direct Line of Site (LOS) between the beam generator source and the

target.

Both command and homing guidance methods can use RF, IR, or optical sensors

and are mostly used for maneuvering targets. An autonomous guidance system is
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Figure 6.2: Missile Guidance Systems Classification

usually used when predefined way points are desired or a certain target with known

position has to be reached. Different types of sensors can be used for precise naviga-

tion such as inertial sensors and Digital Scene Matching Area Correlation (DSMAC)

radar.

In order to orient the missile toward intended target points, it is vital to acquire

the correct information about the states of the targets during the flight of the vehi-

cles. One of the most widely-used ways to achieve this task is the utilization of seekers

which act as the guidance sensors mentioned earlier [8]. Physically, the measurement

capability of seekers is restricted due to some physical, optical, and electronic lim-

itations such as limited field-of-view (FOV), atmospheric transmittance, and noise

effects. Regarding these characteristics, basically two types of seekers are employed

in the relevant applications: strap-down or body-fixed seekers and gimbaled seekers.

The strap-down seekers are directly mounted on the vehicle body under consideration.

Therefore, their measurements become relative to the body fixed reference frame of

the missile. For overcoming the FOV limitations of the strap-down seekers, the gim-

baled seekers are preferred in some of the implementations. In this scheme, the seeker
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is mounted on a platform supported by two orthogonal gimbals usually powered by

DC motors, and stabilized by means of rate gyro feedbacks. This way, the FOV range

of the seeker is increased considerably. Also, the line of sight (LOS) angle and the

LOS angular rate can be measured directly independently of the missile motion. A

comparison of gimbaled and strap-down seeker models according to some significant

criteria is given in Table 6.1 [137].

The following target intercept rules are possible within homing guidance strategies

[123]:

• Pure Pursuit

In the pursuit trajectory, the interceptor missile flies directly toward the target

at all times. Thus, the heading of the missile is maintained essentially along

the LOS between the missile and the target by the guidance system. The most

favorable application of the pursuit course guidance law is against slow-moving

aircraft, or head on toward an incoming aircraft.

• Deviated Pursuit

The interceptor missile tracks the target and produces guidance commands.

This guidance law is similar to pure pursuit, except that the missile heading

leads the LOS by a fixed angle. When the fixed lead angle is zero, deviated

pursuit becomes pure pursuit.

• Lead Pursuit

A lead pursuit course is flown by an interceptor (i.e., a missile) directing its

velocity vector at an angle from the target so that projectiles launched from
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Table 6.1: Comparison of Gimbaled and Strap-Down Seeker Models

Gimbaled Seeker Strap-Down Seeker
Mounting Mounted on two-gimbal Rigidly mounted on

platform and powered by the missiles body
DC motors

FOV Up to ±90o About ±3o

Angle and Rate LOS angle and LOS LOS angle and LOS
Measurements angular rate error angles angular rate error angles

with respect to the ground between the missile center
line and the LOS

any point on the course will impact on the target if it is within the range of the

weapon.

• Proportional Navigation

Proportional Navigation (PN) is the most widely known and used guidance law

for short- to medium-range homing missiles, because of its inherent simplicity

and ease of implementation. Simply stated, classical proportional navigation

guidance is based on recognition of the fact that if two bodies are closing on

each other, they will eventually intercept if the line of sight (LOS) between

the two does not rotate relative to the inertial space. More specifically, the

PN guidance law seeks to null the LOS rate against non-maneuvering targets

by making the interceptor missile heading proportional to the LOS rate. For

instance, in flying a proportional navigation course, the missile attempts to null

out any line-of-sight rate that may be developing. The proportionality factor

consists of the navigation constant, closing velocity multiplier, and a geometric

gain factor that accounts for the fact that the orientation of the missile velocity
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is not necessarily along the instantaneous LOS. The navigation constant (N)

is based on the missiles acceleration requirements and will vary depending on

target maneuvers and other system-induced tracking-error sources. In order to

minimize the missile acceleration requirement, the values of N between 3 and 5

are usually used to obtain an acceptable miss distance intercept. Note that for

most applications, the effective navigation ratio is restricted to integer values.

The majority of homing guided missiles, uses gimbaled seekers (an example of

gimbaled seekers is shown in Fig.6.3 [123]). This allows the sensor to be pointed

at the target when the missile is not pointed at the target. This is important for

two main reasons. One is that before and during launch, the missile cannot always

be pointed at the target. Rather, the missile points its seeker at the target using

information from its launching station. After this, the seeker remains locked on the

target, even if the launching platform moves. When the missile is launched, it may not

be able to control the direction it points until the rocket motor drives the missile to

high enough speed for fins to control its direction of travel. Until then, the gimbaled

seeker needs to be able to track the target independently.

Even while it is under positive control and on its way to intercept the target, it

probably will not be pointing directly at it; unless the target is moving directly toward

or away from the launching platform, the shortest path to intercept the target will

not be the path taken while pointing straight at it, since it is moving laterally with

respect to the missile’s view. Old missiles would simply point towards the target and

chase it, and this was inefficient. Modern missiles are smarter and use the gimbaled
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Figure 6.3: Active Radar Gimbaled Seeker Basic Blocks

seeker head combined with what is known as proportional guidance in order to avoid

oscillation and to fly an efficient intercept path.

The control technique used for the gimbal system on a tactical missile must pro-

vide fast and precise tracking of relative error signals created by the missile’s signal

processing unit. Poor performance during engagement will result in large miss dis-

tances which may lead to low probability of mission success. The equations describing

the gimbal system under consideration are highly nonlinear. In order to accurately

calculate the missile-target LOS angle and its rate, accurate nonlinear control of the

motion of the gimbaled seeker through the attached DC motors is required. The lin-

ear control techniques become inadequate and it becomes necessary to use nonlinear

control techniques. The era of rapid technological change has motivated the develop-

ment of nonlinear control theory for application to challenging, complex dynamical

real-world problems [18].

The new technique of finite-horizon nonlinear tracking via SDRE is an appropriate

solution for the missile tracking problem [74]. Although the SDRE has a great impact

in the missile guidance area [28, 113, 134], but none of these works have addressed
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the problem of finite-horizon optimal control of nonlinear systems.

6.2 Description of Missile System

The missile examined in this dissertation research is a semi active homing guided

missile [81]. The semi-active homing guidance system is based on the principle of

utilizing the electromagnetic wave reflection. A ground radar illuminates the target,

the missile seeker is designed to home on the reflected energy from the target during

its flight. Using this reflected system energy from the target the missile formulates

its own correction signals. The missile is steered in space following the proportional

navigation guidance method. An on-board guidance kit is utilized to generate the

guidance commands. The missile is aerodynamically controlled with an accelera-

tion control autopilot to steer the missile while skid-to-turn (STT) control policy

is utilized. The STT steering policy requires two identical lateral (pitch and yaw)

autopilots to control the missile attitude while a roll autopilot performs attitude sta-

bilization in the maneuver plane. A roll position controller is utilized to keep an

adequate roll damping [41].

The missile flies in the air under the effect of thrust, weight, and aerodynamic

forces. The action of these forces has a certain effect on the shape of the missile

trajectory. The aerodynamic force is usually distributed to the axes of the velocity

coordinate system, which relate to the direction of the missile motion. The com-

ponents of this force are resolved along the missile body axes as Fxa, Fya, andFza .

These forces create aerodynamic moments owing to the fact that they do not pass
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Figure 6.4: Missile Seeker Angular Geometry [123]

through the missile center of gravity. The aerodynamic moment components around

the missile body axes are Mxa,Mya, and Mza. The missile seeker is a narrow band,

continuous wave (CW) receiver that operates as a lock on-before-launch, semi-active

homing system. The system has limited recede capability and cannot lock on targets

incoming at less than a certain threshold (minimum incoming speed). The missile

flight and homing head angles are shown in Fig. 6.4.

The goal of gimbaled seeker controller is to control the seeker antenna DC motor to

minimize the angle ε between the LOS and the antenna axis, as minimum as possible.

Then, the missile aerodynamic and/or thrust forces will try to guide the missile body

to control the angle between the seeker antenna and the missile body axis, θh.
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6.3 Simulation Results

For numerical simulation and analysis, the developed nonlinear optimal tracking tech-

nique is implemented for a DC motor attached to a realistic gimbaled seeker system.

A computer code written under MATLAB c©environment is employed to solve a missile

simulation model [81]. The code is devoted to evaluate the structure of the 6-Degree

of Freedom (6 DOF) model in conjunction with the calculation of the desired seeker

angles via numerical implementation [17]. Proportional navigation is the guidance

method used in these simulations. In this guidance method, the guidance commands

are generated in proportion to the LOS angular rate [132].

Extensive simulation has been carried out for both deterministic case and stochastic

case. Three engagement scenarios, in the pitch plane only for better illustrations, in-

cluding fixed target, non-maneuvering target, and maneuvering target are considered

in the form of case studies.

The dynamic equations for the gimbaled seeker DC motor are:

V (t) = L
di(t)

dt
+Ri(t) + kb

dθ(t)

dt
, (6.3.1)

ml2
d2θ(t)

dt2
= −mglsin(θ(t))− kmi(t). (6.3.2)
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The nonlinear equations of the system can be written in the form:

ω(t) =
dθ(t)

dt
, (6.3.3)

V (t) = L
di(t)

dt
+Ri(t) + kwω(t), (6.3.4)

kii(t) = J
dω(t)

dt
+Bω(t) + Csgn(ω), (6.3.5)

where R is the armature resistance, L is the armature inductance, V is the voltage

applied to the motor, i is the current through the motor, e is the back Electro magnetic

force (EMF) voltage, J is the moment of inertia of the load, B is the viscous friction

coefficient, τ = kii(t) is the torque generated by the motor, θ is the angular position

of the motor, ω is the angular velocity of the motor kw is the back EMF constant, ki

is the torque constant of the motor, C is the motor static friction.

The signum function sgn(ω) is defined as

sgn(ω) =















−1 for ω < 0,

1 for ω > 0,

(6.3.6)

or it can be written in this form:

sgn(ω) =
|ω|

ω
. (6.3.7)
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The nonlinear state equations can be written in the form:

ẋ1 = x2, (6.3.8)

ẋ2 =

(

−B

J
−

−C

J |x2|

)

x2 +
ki

J
x3, (6.3.9)

ẋ3 = −
kw

L
x2 −

R

L
x3 +

1

L
u, (6.3.10)

y = x1, (6.3.11)

where: θ = x1 , θ̇ = x2 , i = x3, and V = u.

Or alternatively in state dependent form
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
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


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

0

0

1
L

















u. (6.3.12)

where: θ = x1 , θ̇ = x2 , i = x3, V = u,

The weight matrices are chosen to be

Q = diag(3000, 0, 0), R = 30, F = diag(1, 1, 1). (6.3.13)

For the stochastic case, the covariances of the noises have been taken as

Qw = diag(0.2, 0.2, 0.2), Rv = 10. (6.3.14)
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6.3.1 The Deterministic Environment

6.3.1.1 Case 1: Fixed Target

In this case the desired seeker angle will be z(t) = 0o, i.e the problem is now a regulator

problem.

The simulations are performed for final time of 8 seconds, and the engagement

scenario is shown in Fig. 6.5. The resulting trajectories for the desired and achieved

seeker angles are presented in Fig. 6.6, and the optimal error is shown in Fig. 6.7.

In Fig. 6.6, the solid line denotes the actual (achieved) angle trajectory of the

finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.5: Missile-Target Engagement Scenario (Case 1)

As shown in Fig. 6.5, a successful hit is observed. Fig. 6.6 shows that the finite-

horizon differential SDRE nonlinear regulating algorithm presenting excellent results

117



0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [sec]

O
p
ti
m

a
l 
 A

n
g
le

s
 [
d
e
g
]

 

 

 Actual Angle

Desired Angle

Figure 6.6: Angle Trajectories for Gimbaled System (Case 1)
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Figure 6.7: Optimal Error for Gimbaled System (Case 1)

and the developed technique is able to solve the differential SDRE finite-horizon

nonlinear regulator problem with a zero average optimal error and 0.001o standard
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deviation.

6.3.1.2 Case 2: Non-Maneuvering Target

Consider a non-maneuvering target (with constant velocity). The simulations are per-

formed for final time of 8 seconds, and the engagement scenario is shown in Fig. 6.8.

The resulting trajectories for the demanded and achieved seeker angles are illustrated

in Fig. 6.9, and the optimal angle error is shown in Fig. 6.10.

In Fig. 6.9, the solid line denotes the actual (achieved) angle trajectory of the

finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.8: Missile-Target Engagement Scenario (Case 2)

Fig. 6.8 show that a successful hit is observed with acceptable miss-distance.

Comparing these trajectories in Fig. 6.9, it’s clear that the developed finite-horizon

differential SDRE nonlinear tracking method is able to solve the finite-horizon non-

linear tracking problem with an reasonable standard deviation error of 0.035o.
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Figure 6.9: Angle Trajectories for Gimbaled System (Case 2)
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Figure 6.10: Optimal Error for Gimbaled System (Case 2)
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6.3.1.3 Case 3: Maneuvering Target

Consider a highly maneuvering target. The simulations are performed for final time

of 10 seconds, and the engagement scenario is shown in Fig. 6.11. The resulting

trajectories for the demanded and the achieved seeker angles are illustrated in Fig.

6.12, and the optimal angle error is shown in Fig. 6.13.

In Fig. 6.12, the solid line denotes the actual (achieved) angle trajectory of the

finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.11: Missile-Target Engagement Scenario (Case 3)

Fig. 6.11 show that a successful hit is observed with acceptable miss-distance.

Comparing these trajectories in Fig. 6.12, it’s clear that the gimbaled seeker per-

forming a very good tracking for the target even when the target tried to make high

maneuver. The gimbaled seeker controlled by the developed technique is able to track

maneuvering target with standard deviation error of 0.046o, which is accepted in this

high maneuver scenario.
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Figure 6.12: Angle Trajectories for Gimbaled System (Case 3)
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Figure 6.13: Optimal Error for Gimbaled System (Case 3)
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6.3.2 The Stochastic Environment

6.3.2.1 Case 1: Fixed Target

In this case the desired seeker angle will be z(t) = 0o, i.e the problem is now a regulator

problem.

The simulations were performed for final time of 8 seconds, and the engagement

scenario is shown in Fig. 6.14. The resulting trajectories for the demanded and

achieved seeker angles are presented in Fig. 6.15, and the optimal error is shown in

Fig. 6.16.

In Fig. 6.15, the solid line denotes the estimated (with noise) angle trajectory of

the finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.14: Missile-Target Engagement Scenario (Case 1 Stochastic)

As shown in Fig. 6.14, a successful hit is observed. Fig. 6.15 shows that the finite-

horizon differential SDRE nonlinear regulating algorithm gives excellent results and

the developed technique is able to solve the differential SDRE finite-horizon nonlinear
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Figure 6.15: Angle Trajectories for Gimbaled System (Case 1 Stochastic)
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Figure 6.16: Optimal Error for Gimbaled System (Case 1 Stochastic)
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regulator problem with a zero average optimal error and 0.003o standard deviation.

6.3.2.2 Case 2: Non-Maneuvering Target

Consider a non-maneuvering target (with constant velocity). The simulations were

performed for a final time of 8 seconds, and the engagement scenario is shown in

Fig. 6.17. The resulting trajectories for the demanded and achieved seeker angles are

illustrated in Fig. 6.18, and the optimal error is shown in Fig. 6.19.

In Fig. 6.18, the solid line denotes the estimated (with noise) angle trajectory of

the finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.17: Missile-Target Engagement Scenario (Case 2 Stochastic)

Fig. 6.17 show that a successful hit is observed with acceptable miss-distance.

Comparing these trajectories in Fig. 6.18, it’s clear that the developed finite-horizon

differential SDRE nonlinear tracking algorithm is able to solve the finite-horizon non-

linear tracking problem with an reasonable standard deviation error of 0.045o.
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Figure 6.18: Angle Trajectories for Gimbaled System (Case 2 Stochastic)
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Figure 6.19: Optimal Error for Gimbaled System (Case 2 Stochastic)
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6.3.2.3 Case 3: Maneuvering Target

Consider a highly maneuvering target. The simulations were performed for final time

of 10 seconds, and the engagement scenario is shown in Fig. 6.20. The resulting

trajectories for the demanded and achieved seeker angles are illustrated in Fig. 6.21,

and the optimal error is shown in Fig. 6.22.

In Fig. 6.21, the solid line denotes the estimated (with noise) angle trajectory of

the finite-horizon tracking controller, the dashed line denotes the desired seeker angle.
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Figure 6.20: Missile-Target Engagement Scenario (Case 3 Stochastic)

Fig. 6.20 show that a successful hit is observed with acceptable miss-distance.

Comparing these trajectories in Fig. 6.21, it’s clear that the gimbaled seeker per-

forming a very good tracking for the target even when the target tried to make high

maneuver. The gimbaled seeker controlled by the developed method is able to track

maneuvering target with standard deviation error of 0.054o, which is accepted with

this high maneuver.
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Figure 6.21: Angle Trajectories for Gimbaled System (Case 3 Stochastic)
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Figure 6.22: Optimal Error for Gimbaled System (Case 3 Stochastic)
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6.4 Conclusions

The control technique used for the gimbal system on a tactical missile must provide

fast and precise tracking of relative error signals created by the missile’s signal pro-

cessing unit. This chapter presented a finite-horizon nonlinear tracking technique,

for both deterministic and stochastic cases, used for the gimbaled system in missile

seeker. The proposed technique provides an excellent angle tracking. Simulation re-

sults are included to demonstrate the effectiveness of the developed technique. Three

engagement scenarios including fixed target, non-maneuvering target, and maneuver-

ing target are considered to demonstrate the effectiveness of the developed technique.
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Chapter 7

Finite-Time, Nonlinear Tracking:

Experimental/Validation Results

DC motors are widely used in industrial applications. Controlling of DC motor is

a great challenge for control engineers. Precise equations describing DC motors are

nonlinear. Accurate nonlinear control of the motion of the DC motors is required.

Traditional technique to control nonlinear systems is to linearize the nonlinear sys-

tem in a small region around the operating point and then design linear controllers.

These controllers with constant gains can be expected to perform satisfactorily in the

neighborhood of the operating point. However, they may not be capable of dealing

with a situation over a large range of operating points. To overcome this drawback,

one approach is to use extended linearization design [124]. This approach is to de-

sign several linear controllers matching to several operating points that may cover the

whole dynamic region of the system. Then these linear controllers are pieced together

to obtain a nonlinear controller, which is known as gain scheduling with respect to
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constant operating equilibrium points [115]. But the major limitation of gain schedul-

ing is that stability properties of the closed-loop system can be guaranteed only in a

vicinity of the equilibrium manifold and under an assumption of a slow variation of

signals [102].

In this chapter, we address the problem of finite-horizon position control of a

permanent magnet DC motor based on the nonlinear system dynamics. The devel-

oped technique for tracking of finite-horizon nonlinear systems is utilized. Hardware

in the loop simulation (HILS) system with a DC motor is presented to validate the

theoretical analysis.

7.1 Hardware in the Loop Simulation (HILS) Setup

Traditional software-based simulation has the disadvantage of being unable to ac-

curately imitate real operational environment. One way to bridge the gap between

simulation and real conditions is the HILS. Real-time HILS replaces some simulation

models of a system by one or several real hardware that interacts with the computer

models. This increases the realism of the simulation and provides access to some

features not accessible in software-only simulation models [91].

The basic principle of HILS is that some subsystems are physically embedded

within a real-time simulation model. Real-time means the simulation of each com-

ponent performed such that input and output signals show the same time dependent

values as in real world dynamic operation. In HILS, the embedded system is fooled

into thinking that it is operating with real world inputs and outputs, in real-time. A
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Figure 7.1: Hardware in the Loop (HIL) Experimental Setup

computer software with real-time simulation capabilities and communication abilities

is necessary to perform HILS [119].

This section describes the HILS setup and the implementation of the finite-horizon

differential SDRE designed in Chapter 4 to control a real DC motor.

The experimental setup shown in Fig. 7.1, consists of a Hilink microcontroller

board manufactured by Zeltom Educational and Industrial Control System Company

[1], a corresponding SIMULINK c©library from MATLAB c©and SIMULINK c©, DC mo-

tor with encoder, and Hall effect current sensor.
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7.1.1 The HILINK Platform

The HILINK platform offers a seamless interface between physical plants and Mat-

lab/Simulink for implementation of real-time HILS control systems. It is fully inte-

grated into MATLAB c©and SIMULINK c©and has a broad range of inputs and outputs.

The HILINK platform consists of the real-time control board (hardware) and the as-

sociated Matlab interface (software). The real-time control board, which is shown in

Fig. 7.2, is based on a dsPIC30F2012 digital signal controller, which is a high per-

formance 16 bit digital signal controller with 12 kB flash program memory and 1 kB

SRAM data memory. The HILINK board has 8x12 bit analog inputs, 2x16 bit cap-

ture inputs, 2x16 bit encoder inputs, 1x8 bit digital input, 2x12 bit analog outputs,

2x16 bit frequency outputs, 2x16 bit pulse outputs and 1x8 bit digital output. The

board also contains 2 H-bridges with 5 A capability to drive external heavy loads.

Some inputs and outputs are multiplexed to simplify the hardware. The board is

interfaced to the host computer that runs Matlab through a serial port. The software

of the HILINK platform is fully integrated into Matlab/Simulink/Real-Time Win-

dows Target and comes with Simulink library blocks associated with each hardware

input and output. The platform achieves real-time operation with sampling rates up

to 3.8 kHz. The board requires a 6-15 V, at least 0.15 A (without any external load),

regulated DC power supply. The recommended power supply for the board is a 12 V

well regulated DC power supply with 5 A drive capability.

The functional block diagram of the board is shown in Fig. 7.3, where A0–A7

are the analog inputs, B0–B1 are the analog outputs, C0–C1 are the capture inputs,
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Figure 7.2: HILINK Board

D0-d0–D0-d7 are the digital inputs, E0–E1 are the encoder inputs, F0–F1 are the

frequency outputs, G0-g0–G0-g7 are the digital outputs and H0–H1 are the pulse

outputs; ADC represents the analog-to-digital converter, DAC represents the digital-

to-analog converter, ICM represents the input capture module, OCM represents the

output-compare module, DIP represents the digital-input port, DOP represents the

digital-output port, QEM represents the quadrature-encoder module and PWM rep-

resents the pulse-width modulator, FLs are the low pass filters with outputs L0-L1

and HBs are the H-bridges with outputs P0–P1, and µC is the central microcon-

troller, UART is the universal-asynchronous-receiver transmitter unit and PC is the

host computer.

7.1.2 The DC Motor with Encoder

The DC motor used in this research is a carbon-brush permanent magnet 12v DC

motor (see Fig. 7.4). The system model is shown in Fig. 7.5 , where R is the armature
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Figure 7.3: HILINK Board Functional Block Diagram

resistance, L is the armature inductance, v is the voltage applied to the motor, i is

the current through the motor, e is the back EMF voltage, J is the moment of inertia

of the load, B is the viscous friction coefficient, τ = kii(t) is the torque generated by

the motor, θ is the angular position of the motor,and ω is the angular velocity of the

motor. The encoder is used to measure the motor angular position of the DC motor.

Figure 7.4: Permanent Magnet DC Motor
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Figure 7.5: Permanent Magnet DC Motor System Model

The dynamic equations for the DC motor are

ω(t) =
dθ(t)

dt
, (7.1.1)

V (t) = L
di(t)

dt
+Ri(t) + kwω(t), (7.1.2)

kii(t) = J
dω(t)

dt
+Bω(t) + Csgn(ω), (7.1.3)

where kw is the back EMF constant, ki is the torque constant of the motor, and C is

the motor static friction, and the signum function sgn(ω) is defined as

sgn(ω) =
|ω|

ω
. (7.1.4)

The nonlinear state equations of the system can be written in the form:

ẋ1 = x2, (7.1.5)

ẋ2 =

(

−B

J
−

−C

J |x2|

)

x2 +
ki

J
x3, (7.1.6)

ẋ3 = −
kw

L
x2 −

R

L
x3 +

1

L
u, (7.1.7)

y = x1, (7.1.8)
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where: θ = x1 , θ̇ = x2 , i = x3, and V = u.

7.1.3 The Hall-Effect Current Sensor

The Hall effect current sensor is used the measure the current through the DC motor.

The operating voltage range for this sensor is 4.5 V to 5.5 V, and it has from -5 A to

+5 A current range with 0.185 V/A sensitivity.

7.1.4 The Simulink Model

In the Simulink model shown in Fig. 7.6, the reference motor angle is generated in

the signal builder block, and H0 block transfers the optimal control voltage from the

MATLAB c©and SIMULINK c©in the host PC to the DC motor via the HILINK card.

A0 and E0 are the current sensor and encoder input blocks respectively. The outputs

from the current sensor and encoder input blocks should be filtered with a low pass

filter to get rid of the high frequency noise resulting from the numerical differentiation.

The function of 1/(0.01s + 1) is acting as a low pass filter. The reference motor angle

generated from the signal builder and the motor actual angle would be shown in the

scope in the Simulink model.

7.2 Simulation and Experimental Results

In this section simulation results in Matlab/Simulink are presented and compared

with the real-time hardware experimental results via the experimental setup by ZEL-

TOM company. Thus, thereby showing the effectiveness of the proposed method.
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Figure 7.6: HILS Simulink Model

7.2.1 Simulation Results

The nonlinear state equations of the DC motor (7.1.5–7.1.7) can be rewritten in state

dependent form
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where: θ = x1 , θ̇ = x2 , i = x3, and V = u.

Let the reference angle z(t) = 90o,and the selected weighted matrices are

Q = diag(60, 0, 0), R = 0.7, F = diag(1, 1, 1). (7.2.2)

The simulations are performed for final time of 10 seconds and the resulting angle

trajectories are shown in Fig. 7.7, where the dash-dot line denotes the reference angle

trajectory, and the solid line denotes the actual trajectory. The optimal control is

shown in Fig. 7.8.
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Figure 7.7: Optimal Position Tracking for the Simulated DC Motor
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Figure 7.8: Optimal Control Voltage for the Simulated DC Motor

Comparing these trajectories in Fig. 7.7, it’s clear that the proposed method gives

very good results as the actual optimal angle is making a very good tracking to the

reference angle with standard deviation error of 0.02o.
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7.2.2 Experimental Results

Once the algorithms have been developed and tested in software, the next step is to

compare the results between software simulation and real world applications. Here,

the method of HILS is applied by using the experimental setup introduced in Section

7.1.

A schematic diagram of the experimental setup is given in Fig. 7.9. The exper-

iment is performed for final time of 10 seconds and the resulting angle trajectories

is shown in Fig. 7.10, where the dash-dot line denotes the reference angle trajec-

tory, and the solid line denotes the actual trajectory. Comparing these trajectories in

Fig. 7.10, it’s clear that the propose algorithm gives very good results as the actual

optimal angle is making a very good tracking to the reference angle with standard

deviation error of 0.025o.

Figure 7.9: Schematic Diagram for Hardware in the Loop Simulation
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Figure 7.10: Optimal Angle Tracking for the HILS System

For further demonstration, the performance of the DC motor with the finite-

horizon differential SDRE controller to track a multi step and multi frequency refer-

ence is shown in Fig 7.11 and Fig 7.12 respectively. It shows that the controller gives

almost the same performance regardless of the value of the step reference.
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Figure 7.11: Multi-Step DC Motor Position Reference Tracking

Figure 7.12: Multi-Frequency DC Motor Position Reference Tracking
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7.3 Conclusions

The problem of finite-horizon position control of a permanent magnet DC motor

based on the nonlinear system dynamics is addressed in this chapter. The developed

technique for finite-horizon tracking of nonlinear systems via differential SDRE is

utilized. HILS system based on a microcontroller board and a real DC motor is used

to validate the theoretical analysis. The consistency of the experimental results with

the simulation results demonstrates the effectiveness of the developed technique.
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Chapter 8

Conclusions and Future

Investigations

In this dissertation, a detailed investigation of advanced regulation and tracking

strategies for linear and nonlinear optimal control systems and its application has

been presented. The main conclusions derived from this dissertation are discussed in

this chapter. Recommendations for future research are also addressed.

8.1 Conclusions

The State Dependent Riccati Equation (SDRE) provide an effective algorithm for

optimal control design for nonlinear dynamical systems. The SDRE algorithm cap-

tures the nonlinearities of the system, transforming the original nonlinear system to

a linear-like structure with State Dependent Coefficient (SDC) matrices, and mini-

mizing a non-quadratic performance index with a quadratic-like structure. The main
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advantage of SDRE is the ability to make tradeoffs between control effort and state

errors by tuning the SDC.

This research presented an efficient online technique used for infinite-horizon non-

linear stochastic regulator and tracking problems. The idea of the proposed technique

is the integration of the Kalman filter algorithm and the infinite-horizon algebraic

SDRE technique. Unlike the ordinary methods which deal with the linearized sys-

tem, this technique estimates the unmeasured states of the nonlinear system directly.

Next, this research discussed an online technique for finite-horizon regulation and

tracking of nonlinear systems. The proposed technique is based on change of variables

that converts the nonlinear differential Riccati equation (DRE) (to be solved backward

in time using final condition) to a linear differential Lyapunov equation ( to be solved

forward in time using change in variables).

Then, a finite-horizon differential SDRE nonlinear filtering technique was pre-

sented for online implementation. The Kalman filter is used to estimate the states

after converting the DRE to a linear Lyapunov equation. Solving the nonlinear op-

timal control problem with the differential SDRE algorithm, makes this technique

effective for a wide range of operating points.

Missile guidance and control is one of the applications that need fast and precise

tracking of relative error signals created by the missile’s signal processing unit. The

proposed finite-horizon nonlinear tracking technique was used for angle tracking of

the gimbaled system in missile seeker. Three engagement scenarios, based on real

data, including fixed target, non-maneuvering target, and high maneuvering target

were considered to demonstrate the effectiveness of the developed technique.
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The Hardware In The Loop Simulation (HILS) is used to bridge the gap between

software simulation and real world applications. The HILS is applied by using HILS

setup based on a microcontroller board manufactured by Zeltom Educational and

Industrial Control System Company and a real DC motor. HILS system is presented

to validate the theoretical analysis and the simulation results.

8.2 Future Investigations

Some of the recommendations for further research are given below:

1. Development of finite-horizon optimal regulation and tracking for nonlinear,

discrete-time, stochastic systems with uncertainty and disturbance.

2. Development of finite-horizon optimal regulation and tracking for continuous-

time nonlinear systems (both deterministic & stochastic) using singular pertur-

bation and time-scale methods.

3. Development of finite-horizon optimal regulation and tracking for nonlinear,

discrete-time nonlinear systems (both deterministic & stochastic) using singular

perturbation and time-scale methods.

4. Real-time implementation and validation of the above proposed research prob-

lems based on real-world situations.
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[24] T. Çimen and S.P. Banks. Nonlinear optimal tracking control with application

to super-tankers for autopilot design. Automatica, 40:1845–1863, 2004.

[25] Insu Chang, Sang-Young Park, and Kyu-Hong Choi. Decentralized coordinated

attitude control for satellite formation flying via the state-dependent Riccati

equation technique. International Journal of Non-Linear Mechanics, 44(8):891–

904, 2009.

[26] Cheng-Hung Chen. Hybrid Control Strategies for Smart Prosthetic Hand. PhD

thesis, Idaho State University, 2009.

150



[27] T. Cheng, F. L. Lewis, and M. Abu-Khalaf. A neural network solution for

fixed-final time optimal control of nonlinear systems. Automatica, 43:482–490,

2007.
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